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Vectors and matrices
We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by Rn, while
the space of real-valued m× n matrices is denoted by Rm×n. That’s it: 1

x =


x1
x2
...

xn

 xT =
[
x1 x2 . . . xn

]
x ∈ Rn, xi ∈ R (1)

Similarly, if A ∈ Rm×n we denote transposition as AT ∈ Rn×m:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 AT =


a11 a21 . . . am1
a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

 A ∈ Rm×n, aij ∈ R

We will write x ≥ 0 and x ̸= 0 to indicate componentwise relationships

1A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares -
book by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of
the book Numerical Optimization by Jorge Nocedal Stephen J. Wright.
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Figure 1: Equivivalent representations of a vector
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A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

Question

Is it correct, that a positive definite matrix has all positive entries?

Question

Is it correct, that if a matrix is symmetric it should be positive definite?

Question

Is it correct, that if a matrix is positive definite it should be symmetric?
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Matrix product (matmul)

Let A be a matrix of size m× n, and B be a matrix of size n× p, and let the product AB be:

C = AB

then C is a m× p matrix, with element (i, j) given by:

cij =
n∑

k=1

aikbkj .

This operation in a naive form requires O(n3) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Question

Is it possible to multiply two matrices faster, than O(n3)? How about O(n2), O(n)?
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Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)
• ⟨x, Ay⟩ = ⟨AT x, y⟩
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R

2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
( n∑

i=1

|xi|p
)1/p

.
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p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

∥x∥∞ = max
i
|xi|

L1 norm (or Manhattan distance) which is defined as the sum of modules of the elements of x:

∥x∥1 =
∑

i

|xi|

L1 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Figure 2: Balls in different norms on a plane
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Matrix norms
In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

∥A∥F =

(
m∑

i=1

n∑
j=1

|aij |2
)1/2

Spectral norm, ∥A∥2 is one of the most used matrix norms (along with the Frobenius norm).

∥A∥2 = sup
x ̸=0

∥Ax∥2

∥x∥2
,

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are
efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It
holds

∥A∥2 = σ1(A) =
√

λmax(AT A)

where σ1(A) is the largest singular value of the matrix A.
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Scalar product

The standard scalar (inner) product between vectors x and y from Rn is given by

⟨x, y⟩ = xT y =
n∑

i=1

xiyi = yT x = ⟨y, x⟩

Here xi and yi are the scalar i-th components of corresponding vectors.

Example

Prove, that you can switch the position of a matrix inside a scalar product with transposition: ⟨x, Ay⟩ =
⟨AT x, y⟩ and ⟨x, yB⟩ = ⟨xBT , y⟩
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Matrix scalar product

The standard scalar (inner) product between matrices X and Y from Rm×n is given by

⟨X, Y ⟩ = tr(XT Y ) =
m∑

i=1

n∑
j=1

XijYij = tr(Y T X) = ⟨Y, X⟩

Question

Is there any connection between the Frobenious norm ∥ · ∥F and scalar product between matrices ⟨·, ·⟩?
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Eigenvectors and eigenvalues

A scalar value λ is an eigenvalue of the n× n matrix A if there is a nonzero vector q such that

Aq = λq.

he vector q is called an eigenvector of A. The matrix A is nonsingular if none of its eigenvalues are zero. The
eigenvalues of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary
eigenvalues. If the matrix is positive definite as well as symmetric, its eigenvalues are all positive real numbers.
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Eigenvectors and eigenvalues
Theorem

A ⪰ (≻)0⇔ all eigenvalues of A are ≥ (>)0

Proof

1. → Suppose some eigenvalue λ is negative and let x denote its corresponding eigenvector. Then

Ax = λx→ xT Ax = λxT x < 0

which contradicts the condition of A ⪰ 0.

2. ← For any symmetric matrix, we can pick a set of eigenvectors v1, . . . , vn that form an
orthogonal basis of Rn. Pick any x ∈ Rn.

xT Ax = (α1v1 + . . . + αnvn)T A(α1v1 + . . . + αnvn)
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i λiv
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i vi ≥ 0

here we have used the fact that vT
i vj = 0, for i ̸= j.
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Eigendecomposition (spectral decomposition)

Suppose A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factorized as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal, i.e., satisfies QT Q = I, and Λ = diag(λ1, . . . , λn). The (real) numbers λi are the
eigenvalues of A and are the roots of the characteristic polynomial det(A− λI). The columns of Q form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric)
eigenvalue decomposition of A. 2

We usually order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λn. We use the notation λi(A) to refer to the i-th largest
eigenvalue of A ∈ S. We usually write the largest or maximum eigenvalue as λ1(A) = λmax(A), and the least or
minimum eigenvalue as λn(A) = λmin(A).

2A good cheat sheet with matrix decomposition is available at the NLA course website.
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Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)
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Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T , (A.12)

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.
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Singular value decomposition

Question

Suppose, matrix A ∈ Sn
++. What can we say about the connection between its eigenvalues and singular

values?

Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?

Basic linear algebra background v § } 18
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:

• Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 3: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 19

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂
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Canonical tensor decomposition
One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which
implies representing the tensor as a sum of r primitive tensors.

Tensor 𝑻𝐼× 𝐽×𝐾

𝑎1

𝑏1
𝑐1

𝑎𝑟

𝑏𝑟
𝑐𝑟

𝐴𝐼× 𝑟 𝐵𝐽× 𝑟 𝐶𝐾× 𝑟

Figure 4: Illustration of Canonical Polyadic decomposition

Example

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring
(TR), and others. In the tensor case, we do not have a straightforward definition of rank for all types of
decompositions. For example, for TT decomposition rank is not a scalar, but a vector.

Basic linear algebra background v § } 20

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;

• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

Question

How does the determinant of a matrix relate to its invertibility?
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First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.

• ∇f(x0) is the gradient of the function at the point x0.
It is very usual to replace the f(x) with fI

x0 (x) near the point x0 for simple
analysis of some approaches. Figure 5: First order Taylor

approximation near the point x0
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Second-order Taylor approximation

The second-order Taylor approximation, also known as the quadratic
approximation, includes the curvature of the function. For a twice-differentiable
function f : Rn → R, its second-order Taylor approximation centered at some
point x0 is:

fII
x0 (x) = f(x0) +∇f(x0)T (x− x0) + 1

2(x− x0)T∇2f(x0)(x− x0)

Where ∇2f(x0) is the Hessian matrix of f at the point x0.

When using the linear approximation of the function is not sufficient one can
consider replacing the f(x) with fII

x0 (x) near the point x0. In general, Taylor
approximations give us a way to locally approximate functions. The first-order
approximation is a plane tangent to the function at the point x0, while the
second-order approximation includes the curvature and is represented by a
parabola. These approximations are especially useful in optimization and
numerical methods because they provide a tractable way to work with complex
functions.

Figure 6: Second order Taylor
approximation near the point x0
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Convergence rates
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Linear convergence

In order to compare perfomance of algorithms we need to define a terminology for different types of convergence.
Let rk = {∥xk − x∗∥2} be a sequence in Rn that converges to zero.

We can define the linear convergence in a two different forms:

∥xk+1 − x∗∥2 ≤ Cqk or ∥xk+1 − x∗∥2 ≤ q∥xk − x∗∥2,

for all sufficiently large k. Here q ∈ (0, 1) and 0 < C <∞. This means that the distance to the solution x∗

decreases at each iteration by at least a constant factor bounded away from 1. Note, that sometimes this type of
convergence is also called exponential or geometric. The q is called the convergence rate.

Question

Suppose, you have two sequences with linear convergence rates q1 = 0.1 and q2 = 0.7, which one is faster?
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Linear convergence

Example

Let us have the following sequence:

rk = 1
2k

One can immediately conclude, that we have a linear convergence with parameters q = 1
2 and C = 0.

Question

Determine the convergence of the following sequence

rk = 3
2k

Convergence rates v § } 26

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Sub and super

Sublinear convergence
If the sequence rk converges to zero, but does not have linear convergence, the convergence is said to be sublinear.
Sometimes we can consider the following class of sublinear convergence:

∥xk+1 − x∗∥2 ≤ Ckq,

where q < 0 and 0 < C <∞. Note, that sublinear convergence means, that the sequence is converging slower, than
any geometric progression.

Superlinear convergence
The convergence is said to be superlinear if it converges to zero faster, than any linearly convergent sequence.
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Convergence rate

Figure 7: Difference between the convergence speed
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Root test

Theorem

Let (rk)∞
k=m be a sequence of non-negative numbers converging to zero, and let α := lim supk→∞ r

1/k
k . (Note

that α ≥ 0.)
(a) If 0 ≤ α < 1, then (rk)∞

k=m converges linearly with constant α.

(b) In particular, if α = 0, then (rk)∞
k=m converges superlinearly.

(c) If α = 1, then (rk)∞
k=m converges sublinearly.

(d) The case α > 1 is impossible.

Proof.

1. let us show that if (rk)∞
k=m converges linearly with constant 0 ≤ β < 1, then necessarily α ≤ β. Indeed,

by the definition of the constant of linear convergence, for any ε > 0 satisfying β + ε < 1, there exists
C > 0 such that rk ≤ C(β + ε)k for all k ≥ m. From this, r

1/k
k ≤ C1/k(β + ε) for all k ≥ m. Passing

to the limit as k →∞ and using C1/k → 1, we obtain α ≤ β + ε. Given the arbitrariness of ε, it follows
that α ≤ β.

2. Thus, in the case α = 1, the sequence (rk)∞
k=m cannot have linear convergence according to the above

result (proven by contradiction). Since, nevertheless, (rk)∞
k=m converges to zero, it must converge

sublinearly.
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Root test

Theorem

1. Now consider the case 0 ≤ α < 1. Let ε > 0 be an arbitrary number such that α + ε < 1. According to
the properties of the limsup, there exists N ≥ m such that r

1/k
k ≤ α + ε for all k ≥ N . Hence,

rk ≤ (α + ε)k for all k ≥ N . Therefore, (rk)∞
k=m converges linearly with parameter α + ε (it does not

matter that the inequality is only valid from the number N). Due to the arbitrariness of ε, this means
that the constant of linear convergence of (rk)∞

k=m does not exceed α. Since, as shown above, the
constant of linear convergence cannot be less than α, this means that the constant of linear convergence
of (rk)∞

k=m is exactly α.

2. Finally, let’s show that the case α > 1 is impossible. Indeed, suppose α > 1. Then from the definition of
limsup, it follows that for any N ≥ m, there exists k ≥ N such that r

1/k
k ≥ 1, and, in particular, rk ≥ 1.

But this means that rk has a subsequence that is bounded away from zero. Hence, (rk)∞
k=m cannot

converge to zero, which contradicts the condition.
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Ratio test

Let {rk}∞
k=m be a sequence of strictly positive numbers converging to zero. Let

q = lim
k→∞

rk+1

rk

• If there exists q and 0 ≤ q < 1, then {rk}∞
k=m has linear convergence with constant q.

• In particular, if q = 0, then {rk}∞
k=m has superlinear convergence.

• If q does not exist, but q = lim
k→∞

supk

rk+1

rk
< 1, then {rk}∞

k=m has linear convergence with a constant not
exceeding q.

• If lim
k→∞

infk
rk+1

rk
= 1, then {rk}∞

k=m has sublinear convergence.

• The case lim
k→∞

infk
rk+1

rk
> 1 is impossible.

• In all other cases (i.e., when lim
k→∞

infk
rk+1

rk
< 1 ≤ lim

k→∞
supk

rk+1

rk
) we cannot claim anything concrete about

the convergence rate {rk}∞
k=m.
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Ratio test lemma

Theorem

Let (rk)∞
k=m be a sequence of strictly positive numbers. (The strict positivity is necessary to ensure that the

ratios rk+1
rk

, which appear below, are well-defined.) Then

lim inf
k→∞

rk+1

rk
≤ lim inf

k→∞
r

1/k
k ≤ lim sup

k→∞
r

1/k
k ≤ lim sup

k→∞

rk+1

rk
.

Proof.
1. The middle inequality follows from the fact that the liminf of any sequence is always less than or equal to

its limsup. Let’s prove the last inequality; the first one is proved analogously.

2. Denote L := lim supk→∞
rk+1

rk
. If L = +∞, then the inequality is obviously true, so let’s assume L is

finite. Note that L ≥ 0, since the ratio rk+1
rk

is positive for all k ≥ m. Let ε > 0 be an arbitrary number.
According to the properties of limsup, there exists N ≥ m such that rk+1

rk
≤ L + ε for all k ≥ N . From

here, rk+1 ≤ (L + ε)rk for all k ≥ N . Applying induction, we get rk ≤ (L + ε)k−N rN for all k ≥ N .
Let C := (L + ε)−N rN . Then rk ≤ C(L + ε)k for all k ≥ N , from which r

1/k
k ≤ C1/k(L + ε). Taking

the limsup as k →∞ and using C1/k → 1, we get lim supk→∞ r
1/k
k ≤ L + ε. Given the arbitrariness of

ε, it follows that lim supk→∞ r
1/k
k ≤ L.
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