Discover acceleration of gradient descent

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

‘f — min
e


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Previously

Gradient Descent: m%{n f(z) " =ab — oV f(ab)
zER"
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
- ~o( ) vreir~o () seh-r~o() et et ((1-4)
vk k k L
k5~0<i2) ksw(’)(l) k5~0(1> kENO(nlog1>
e € e e

‘f ~>1"|‘1'jr; Recap 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Previously

Gradient Descent: m%{n f(z) " =ab — oV f(ab)
zER"
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
- ~o( ) vreir~o () seh-r~o() et et ((1-4)
vk k k L
k5~0<i2) ksw(’)(l) k5~0(1> kENO(nlog1>
e € e e

For smooth strongly convex we have:
k * 1% k 0 *
ety -1 < (1= 1) we - ).
Note also, that for any =

l—x<e™®

‘f ~>1"x‘1'jr; Recap 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Previously
(z) " =ab — oV f(ab)

Gradient Descent: min f
z€R"

smooth & strongly convex (or PL)

convex (non-smooth) smooth (non-convex) smooth & convex

2) rmeneo() sh-r~o() kocr-o((-4))

ks’\“o(l) ks’\’o(1> kENO(n10g1>
B £ €

Finally we have
=1 < (1) g6t - )
<exp (k1) (6" = 1)

For smooth strongly convex we have:

1@ -1 < (1= 5 6 - ).

Note also, that for any = <7
_ < —x 0y _ p* 1
l-—z<e kgzmlongO(mlogg)

R f—omin o


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Previously
(z) " =ab — oV f(ab)

Gradient Descent: min f
z€R"

smooth & strongly convex (or PL)

convex (non-smooth) smooth (non-convex) smooth & convex

2) rmeneo() sh-r~o() kocr-o((-4))

ks’\“o(l) ks’\’o(1> kENO(n10g1>
B £ €

Finally we have
=1 < (1) g6t - )
<exp <k k) (£ = 1)

For smooth strongly convex we have:

1@ -1 < (1= 5 6 - ).

Note also, that for any = 7
_ < —x 0y _ p* 1
l-—z<e kgzmlongO(mlogg)

Question: Can we do faster, than this using the first-order information?
0 O

R f—omin o


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Previously
(z) " =ab — oV f(ab)

Gradient Descent: min f
z€R"

smooth & strongly convex (or PL)

convex (non-smooth) smooth (non-convex) smooth & convex

2) rmeneo() sh-r~o() kocr-o((-4))

ks’\“o(l) ks’\’o(1> kENO(n10g1>
B £ €

Finally we have
=1 < (1) g6t - )
<exp <k k) (£ = 1)

For smooth strongly convex we have:
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Note also, that for any =
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Question: Can we do faster, than this using the first-order information? Yes, we can.
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Lower bounds
The iteration of gradient descent:
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Lower bounds

The iteration of gradient descent:
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Consider a family of first-order methods, where
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Lower bounds

The iteration of gradient descent:
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The iteration of gradient descent:
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Consider a family of first-order methods, where

ler +span{Vf V(!

)} @

‘f — min
roy.e

Lower bounds

Non-smooth convex case

There exists a function f that is M-Lipschitz and
convex such that any first-order method of the
form 1 satisfies

5 M2 — 2"
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Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 1
satisfies
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Oscillations and acceleration

Gradient Descent

Heavy Ball
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Coordinate shift

Consider the following quadratic optimization problem:
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z Az —b' 2 + ¢, where A € ST .
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.

‘f -+ 1’11'}2 Strongly convex quadratic problem

-



https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Coordinate shift

Consider the following quadratic optimization problem:
1
min f(z) = min =z Az —b' 2 + ¢, where A € ST .
zcRd zeRrd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQ"

‘f -+ 1’11'}2 Strongly convex quadratic problem

-



https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z Az —b' 2 + ¢, where A € ST .
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQ"

® | et’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let # = QT (x — z*), where z* is the minimum point of
initial function, defined by Az™ = b. At the same time x = Q% + z™.

f(@) = %(Q:i: +2°)TAQz + ") — b (Q + z7)
= %f:TQTAQi’ + ()T AQ# + %(x*)TA(x*)T —0'Qz —b" "
1

= 53" A%
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Polyak Heavy ball method

Trajectories with Contour Plot Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
e Sodm et 3l ey momentum update is
Optimal Point

" =% — o) 4 B’ — o).

Trajectories with Contour Plot
~&— Heavy Ball with a 3.5e-01 and B 3.0e-01 §§

4 Start Point
Optimal Point
=2,
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Polyak Heavy ball method
Trajectories with Contour Plot Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
—-— Grad\enlDescentwvmslepB5e»01§ momentum update is

4 Start Point
Optimal Point
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Which is in our (quadratics) case is

Bpy1 =&k —aATp + B(&r — &r—1) = (I —aA+ BI)&, — BEr_1

Trajectories with Contour Plot
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Polyak Heavy ball method

Trajectories with Contour Plot Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
o Gradient Descent with step 3.5 — .
Gradient D 't with step 3.5¢ 01\ momentum update Is
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Let's use the following notation 2, = { ;H} . Therefore Z2x+1 = M 2k, where the
k

iteration matrix M is:
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Reduction to a scalar case

Note, that M is 2d X 2d matrix with 4 block-diagonal matrices of size d X d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the
matrix M denotes the same as in the notation above, except for the described permutation of rows and columns.

We use this slight abuse of notation for the sake of clarity.
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Reduction to a scalar case

Note, that M is 2d X 2d matrix with 4 block-diagonal matrices of size d X d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the
matrix M denotes the same as in the notation above, except for the described permutation of rows and columns.

We use this slight abuse of notation for the sake of clarity.

_f[\,‘l(cl)_ i

&
- (1)
4@ Ty M, M
” o |~ M= 2
j‘: - Py
k.—l fz@ M,
: A (d)
A (d) [Tr—1]
L Lk—1]

Figure 1: lllustration of matrix M rearrangement

where :f:,(:) is i-th coordinate of vector &5, € R? and M; stands for 2 x 2 matrix. This rearrangement allows us to
study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2d-dimensional vector sequence of Zj is defined by the worst convergence rate among its
block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

_[i-ax+s -8
- [menes .
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

_[i-ax+s -8
- [menes .

The method will be convergent if p(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

2

L —

0", B" = argmin max p(M) o' = ——F . g = VL-viE\"
B Aelu L] (VL + h)? VL + i
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

_[i-ax+s -8
- [menes .

The method will be convergent if p(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

2
4 . (ﬁ — \//7>

o, 8" =argmin max p(M) o = —7——; —
R (VL + ) VL + i

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ||zx||), generally, will not go to zero monotonically.
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

17&)\14* —
A%Aé”—xd N
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM My l—aXi+8 -8 _1+5—a>\ii\/(1+ﬁ—a)\i)2—4ﬁ
1 72 — 1 0 = 3 .

When « and 3 are optimal (a*, 3%), the eigenvalues are complex-conjugated pair (1 + 8 — a)i)? —48 <0,

ie B> (1—VaX)?
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM My l—aXi+p5 =B _1+5—a>\ii\/(1+ﬂ—a)\i)2—4ﬁ
1 72 — 1 0 = 3 .

When « and 3 are optimal (a*, 3%), the eigenvalues are complex-conjugated pair (1 + 8 — a)i)? —48 <0,

ie B> (1—VaX)?

_ Ltp—2xn _ B2V (L= M)A )

Re(A)) = i Im(A}) = T T

I —
|)\iw _ M

(VL +/p)?
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM My l—aXi+p5 =B _1+5—a>\ii\/(1+ﬂ—a)\i)2—4ﬁ
1 72 — 1 0 = 3 .

When « and 3 are optimal (a*, 3%), the eigenvalues are complex-conjugated pair (1 + 8 — a)i)? —48 <0,

ie B> (1—VaX)?

Re(A)) = i Im(A}) = T T

L —
D =

(VL +/p)?

And the convergence rate does not depend on the stepsize and equals to \/5*.
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Heavy Ball quadratics convergence

Theorem

Assume that f is quadratic u-strongly convex L-smooth quadratics, then Heavy Ball method with parameters

oo 4 ﬂ_ﬁ—\/ﬁ
S WL+ VIt i

converges linearly:

* K—1 *
”kas(f )nxomn
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Heavy Ball Global Convergence 3
Theorem

Assume that f is smooth and convex and that

8el0,1), aec (0,2(1;5))

Then, the sequence {z} generated by Heavy-ball iteration satisfies

leo—a*|® [ LB , 1-8\ 1-8
ST (13+a), if a€(0,—=],

f@r) = f" < ,
zo—x* 1762 . 1_B 2(1_6)
2(T+!)(02(17[|3|)7a[/) <L/B+ ( a) >7 if ac [ ) )’

L L

where T is the Cesaro average of the iterates, i.e.,

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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Heavy Ball Global Convergence *

Theorem

Assume that f is smooth and strongly convex and that

2 1/( pa pra? al
z < e - =) ).
ae(O,L), 0_5<2(2+\/4 +4(1 2)

where ag € (0,1/L]. Then, the sequence {z\} generated by Heavy-ball iteration converges linearly to a
unique optimizer z*. In particular,

flaw) = 5 < " (f(x0) — ),
where g € [0,1).

“Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems
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Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems
® |ocal accelerated convergence was proved in the original paper.
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Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems
® |ocal accelerated convergence was proved in the original paper.
® Recently was proved, that there is no global accelerated convergence for the method.
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Heavy ball method summary

Ensures accelerated convergence for strongly convex quadratic problems

Local accelerated convergence was proved in the original paper.

Recently was proved, that there is no global accelerated convergence for the method.
Method was not extremely popular until the ML boom
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Heavy ball method summary

Ensures accelerated convergence for strongly convex quadratic problems

Local accelerated convergence was proved in the original paper.

Recently was proved, that there is no global accelerated convergence for the method.

Method was not extremely popular until the ML boom

Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)
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The concept of Nesterov Accelerated Gradient method

Tps1 =xK —aVf(zr)  Trpr =k —aVf(zk) + Blar —zr-1) {

‘f -+ 1’11'}11 Nesterov accelerated gradient

Y1 = T + B(Tr — Tr—1)
Tht1 = Yr+1 — aV f(Yrr1)
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The concept of Nesterov Accelerated Gradient method

{yk+1 =z + B(re — Th—1)

Bh+1 = 2k — AV f(a) T+t = Tk — OV f(2k) + 8@k = 2e-1) Trt1 = Yrt1 — &V f(Yrt1)

Let's define the following notation

tt =2 —aVf(x) Gradient step
di = Br(xr — Tr-1) Momentum term
Then we can write down:
Tht1 = :cZ' Gradient Descent
Thi1 = ) + di Heavy Ball
Tho1 = (zk +di)t Nesterov accelerated gradient

‘f -+ ].n:}r; Nesterov accelerated gradient D0
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NAG convergence for quadratics

‘f -+ ]'T"}Il Nesterov accelerated gradient
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General case convergence

Theorem

Let f: R™ — R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point zo = yo € R™ and Ao = 0. The

algorithm iterates the following steps:

Gradient update:

Extrapolation:

Extrapolation weight:

Extrapolation weight:

1
i1 = ax — 7 V(@)
Tet1 = (1 — &) Yk+1 + Yeyk

1+ /144X
2

11—
Ak+1

Akt1 =

Ve =

The sequences {f(yx)}ken produced by the algorithm will converge to the optimal value f* at the rate of

o (k%) , specifically:

flyw) = f°

‘f — min
e

Nesterov accelerated gradient

< 2L||zo — x*|?
S— =
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General case convergence

Theorem

Let f : R™ — R is u-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point o = yo € R" and
Ao = 0. The algorithm iterates the following steps:

1
Gradient update: Yht1l = Th — Evf(mk)
Extrapolation: Trp1 = (1 = ) Yrt1 + VeYk
T —
Extrapolation weight: Y = M
VL+ /i

The sequences { f(yx)}ren produced by the algorithm will converge to the optimal value f* linearly:

F) — £ < B E o — o e (jg)

— min "
‘f - Nesterov accelerated gradient
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