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Previously

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

( 1
k

)
f(xk) − f∗ ∼ O

( 1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
( 1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)

For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε ) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.
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Lower bounds

convex (non-smooth) smooth (non-convex)1 smooth & convex2 smooth & strongly convex (or PL)

O
(

1√
k

)
O

( 1
k2

)
O

( 1
k2

)
O

((
1 −

√
µ

L

)k
)

kε ∼ O
( 1

ε2

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(√
κ log 1

ε

)

1Carmon, Duchi, Hinder, Sidford, 2017
2Nemirovski, Yudin, 1979
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Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 1 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 1
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2
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Oscillations and acceleration
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Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂
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Polyak Heavy ball method
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Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 7
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Polyak Heavy ball method
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Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is
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Reduction to a scalar case
Note, that M is 2d × 2d matrix with 4 block-diagonal matrices of size d × d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the
matrix M denotes the same as in the notation above, except for the described permutation of rows and columns.
We use this slight abuse of notation for the sake of clarity.

Figure 1: Illustration of matrix M rearrangement



x̂
(1)
k
...

x̂
(d)
k

x̂
(1)
k−1
...

x̂
(d)
k−1


→



x̂
(1)
k

x̂
(1)
k−1
...

x̂
(d)
k

x̂
(d)
k−1


M =

M1
M2

. . .
Md



where x̂
(i)
k is i-th coordinate of vector x̂k ∈ Rd and Mi stands for 2 × 2 matrix. This rearrangement allows us to

study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2d-dimensional vector sequence of ẑk is defined by the worst convergence rate among its
block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.
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Reduction to a scalar case

For i-th coordinate with λi as an i-th eigenvalue of matrix W we have:

Mi =
[

1 − αλi + β −β
1 0

]
.

The method will be convergent if ρ(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

α∗, β∗ = arg min
α,β

max
λ∈[µ,L]

ρ(M) α∗ = 4
(
√

L + √
µ)2

; β∗ =
(√

L − √
µ

√
L + √

µ

)2

.

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ∥zk∥), generally, will not go to zero monotonically.
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of Mi:

λM
1 , λM

2 = λ

([
1 − αλi + β −β

1 0

])
=

1 + β − αλi ±
√

(1 + β − αλi)2 − 4β

2 .

When α and β are optimal (α∗, β∗), the eigenvalues are complex-conjugated pair (1 + β − αλi)2 − 4β ≤ 0,
i.e. β ≥ (1 −

√
αλi)2.

Re(λM
1 ) = L + µ − 2λi

(
√

L + √
µ)2

; Im(λM
1 ) =

±2
√

(L − λi)(λi − µ)
(
√

L + √
µ)2

; |λM
1 | = L − µ

(
√

L + √
µ)2

.

And the convergence rate does not depend on the stepsize and equals to
√

β∗.
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Heavy Ball quadratics convergence

Theorem

Assume that f is quadratic µ-strongly convex L-smooth quadratics, then Heavy Ball method with parameters

α = 4
(
√

L + √
µ)2

, β =
√

L − √
µ

√
L + √

µ

converges linearly:

∥xk − x∗∥2 ≤
(√

κ − 1√
κ + 1

)
∥x0 − x∗∥
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Heavy Ball Global Convergence 3

Theorem

Assume that f is smooth and convex and that

β ∈ [0, 1), α ∈
(

0,
2(1 − β)

L

)
.

Then, the sequence {xk} generated by Heavy-ball iteration satisfies

f(xT ) − f⋆ ≤


∥x0−x⋆∥2

2(T +1)

(
Lβ

1−β
+ 1−β

α

)
, if α ∈

(
0,

1 − β

L

]
,

∥x0−x⋆∥2

2(T +1)(2(1−β)−αL)

(
Lβ + (1−β)2

α

)
, if α ∈

[1 − β

L
,

2(1 − β)
L

)
,

where xT is the Cesaro average of the iterates, i.e.,

xT = 1
T + 1

T∑
k=0

xk.

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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Heavy Ball Global Convergence 4

Theorem

Assume that f is smooth and strongly convex and that

α ∈ (0,
2
L

), 0 ≤ β <
1
2

(
µα

2 +

√
µ2α2

4 + 4(1 − αL

2 )
)

.

where α0 ∈ (0, 1/L]. Then, the sequence {xk} generated by Heavy-ball iteration converges linearly to a
unique optimizer x⋆. In particular,

f(xk) − f⋆ ≤ qk(f(x0) − f⋆),

where q ∈ [0, 1).

4Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems

• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)
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The concept of Nesterov Accelerated Gradient method

xk+1 = xk − α∇f(xk) xk+1 = xk − α∇f(xk) + β(xk − xk−1)

{
yk+1 = xk + β(xk − xk−1)
xk+1 = yk+1 − α∇f(yk+1)

Let’s define the following notation

x+ = x − α∇f(x) Gradient step
dk = βk(xk − xk−1) Momentum term

Then we can write down:

xk+1 = x+
k Gradient Descent

xk+1 = x+
k + dk Heavy Ball

xk+1 = (xk + dk)+ Nesterov accelerated gradient

Nesterov accelerated gradient v § } 15
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NAG convergence for quadratics
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General case convergence

Theorem

Let f : Rn → R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and λ0 = 0. The
algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: λk+1 =
1 +

√
1 + 4λ2

k

2

Extrapolation weight: γk = 1 − λk

λk+1

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ at the rate of
O

(
1

k2

)
, specifically:

f(yk) − f∗ ≤ 2L∥x0 − x∗∥2

k2

Nesterov accelerated gradient v § } 17
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General case convergence

Theorem

Let f : Rn → R is µ-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and
λ0 = 0. The algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: γk =
√

L − √
µ

√
L + √

µ

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ linearly:

f(yk) − f∗ ≤ µ + L

2 ∥x0 − x∗∥2
2 exp

(
− k√

κ

)
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