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Norms are not smooth

min f(2),

A classical convex optimization problem is considered. We assume that f(z) is a convex function, but now we do

not require smoothness.
p = Norm Cone

p =1 Norm Cone
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Figure 1: Norm cones for different p - norms are non-smooth
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Wolfe’'s example

R /- min

Non-smooth problems

Wolfe's example

Figure 2: Wolfe's example. ®Open in Colab
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Convex function linear lower bound

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(wo) + (g, & — o)
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Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function
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‘f — min
e

Subgradient calculus

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(wo) + (g, & — o)

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

e If f(z) is differentiable, then g = V f(z0)
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Subgradient calculus

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(wo) + (g, & — o)

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.
e If f(z) is differentiable, then g = V f(z0)
® Not all continuous convex functions are
differentiable.
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Convex function linear lower bound

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(wo) + (g, & — o)

f(ﬂ?o) + <g, Xr — .’L'0> for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

e If f(z) is differentiable, then g = V f(z0)
® Not all continuous convex functions are
differentiable.
We wouldn’t want to lose such a nice property.
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Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)

‘f - ;nylr; Subgradient calculus
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)

The set of all subgradients of a function f(z) at a point zo is called the subdifferential of f at zo and is denoted by

Of (wo).
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)

The set of all subgradients of a function f(z) at a point zo is called the subdifferential of f at zo and is denoted by

Of (zo).

[_92] df(z0) = [g1; 92|

0 To T 0 o T 0 o T

) Figure 4: Subdifferential is a set of all possible subgradients
‘f% fnﬂ Subgradient calculus 0 O
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Subgradient and subdifferential
Find 0f (), if f(z) = |z|
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Subgradient and subdifferential

Find 0f (), if f(z) = |z|

f(z) = |z|
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0f ()
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Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.
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Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point o = af(l’o) = {Vf(ito)}
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Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.

® The convex function f(z) is differentiable at the
point o = af(l’o) = {Vf(ito)}

® If Of(xo) #0 Vao € S, then f(z) is convex on S.

‘f - Pay"; Subgradient calculus


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.

® The convex function f(z) is differentiable at the
point o = af(l’o) = {Vf(ito)}

® If Of(xo) #0 Vao € S, then f(z) is convex on S.

‘f - Pay"; Subgradient calculus


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Subdifferential properties
® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point xg = af(l’o) = {Vf(l’o)}
If 0f (o) #0 Vxzo € S, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2o € ri(S) and f
is differentiable at o, then either Of(zo) = 0 or
df(xo) = {Vf(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.

— mi "
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Subdifferential properties
® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point xg = 8f(1:0) = {Vf(l’o)}
If 0f (o) #0 Vxzo € S, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2o € ri(S) and f
is differentiable at o, then either Of(zo) = 0 or
df(xo) = {Vf(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof
1. Assume, that s € 9f(xo) for some s € R™ distinct
from V f(xo). Let v € R™ be a unit vector. Because
To is an interior point of S, there exists § > 0 such
that xg +tv € S for all 0 < ¢t < §. By the definition
of the subgradient, we have

f(xo +tv) > f(wo) + t(s,v)

— mi "
‘f fnﬂ Subgradient calculus
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Subdifferential properties
® If 29 € riS, then Of(zo) is a convex compact set.  which implies:
® The convex function f(z) is differentiable at the

point 2o = Of (z0) = {V f(z0)}. flwoFt0) = f(@o) & (g o
® If0f(xo) #0 Vxzo € S, then f(x) is convex on S. t
for all 0 < t < §. Taking the limit as ¢ approaches 0 and
i Subdifferential of a differentiable function using the definition of the gradient, we get:
Let f : S — R be a function defined on the set (Vf(zo),v) = lim f(zo +tv) — f(zo) > (s,v)
S in a Euclidean space R". If zp € ri(S) and f t=0;0<t<s ¢

is differentiable at o, then either Of(zo) = 0 or
df(xo) = {Vf(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.

2. From this, (s — V f(x0),v) > 0. Due to the
arbitrariness of v, one can set

po SV i(@o)
Proof s = Vf(zo)ll’
1. Assume, that s € 9f(xo) for some s € R™ distinct
from V f(xo). Let v € R™ be a unit vector. Because
To is an interior point of S, there exists § > 0 such
that xg +tv € S for all 0 < ¢t < §. By the definition
of the subgradient, we have

leading to s = V f(zo).

f(xo +tv) > f(wo) + t(s,v)

— mi "
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Subdifferential properties
® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point o = af(l’o) = {Vf(l’o)}
If 0f (o) #0 Vxzo € S, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2o € ri(S) and f
is differentiable at o, then either Of(zo) = 0 or
df(xo) = {Vf(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof
1. Assume, that s € 9f(xo) for some s € R™ distinct
from V f(xo). Let v € R™ be a unit vector. Because
To is an interior point of S, there exists § > 0 such
that xg +tv € S for all 0 < ¢t < §. By the definition
of the subgradient, we have

f(xo +tv) > f(wo) + t(s,v)

Subgradient calculus

‘f — min
Tz

which implies:

f(zo +tv) = f(wo)
t

> (s,v)

for all 0 < t < §. Taking the limit as ¢ approaches 0 and
using the definition of the gradient, we get:

lim f(zo +tv) — f(wo)

t—0;0<t<d t

<Vf($0),v> = > <87U>

2. From this, (s — V f(x0),v) > 0. Due to the
arbitrariness of v, one can set

_ 8= V f(zo)
l|s = V£ (@o)ll’

leading to s = V f(zo).

3. Furthermore, if the function f is convex, then
according to the differential condition of convexity
f(x) > f(zo) + (Vf(xo),z — z0) for all z € S. But
by definition, this means V f(z0) € f(zo).

0 O 8
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Subdifferential calculus

i Moreau - Rockafellar theorem (subdifferential of
a linear combination)

Let fi(x) be convex functions on convex sets S;, © =
n

1,n. Then if () riS; # 0 then the function f(z) =

i=1

a; fi(z), a; > 0 has a subdifferential 95 f(z) on

-

i=1

the set S = [ S; and

=1

n

dsf(x) =) aids, fi(x)

i=1
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Subdifferential calculus

i Moreau - Rockafellar theorem (subdifferential of
a linear combination)

Let fi(x) be convex functions on convex sets S;, i =
n

1,n. Then if () riS; # 0 then the function f(z) =

i=1
> aifi(z), a; > 0 has a subdifferential ds f(z) on
i=1
the set S = [ S; and
i=1

n

dsf(x) =) aids, fi(x)

i=1
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i Dubovitsky - Milutin theorem (subdifferential of
a point-wise maximum)

Let f;(z) be convex functions on the open convex
set S CR", o € S, and the pointwise maximum
is defined as f(z) = maxfi(z). Then:

Os f(xo) = conv U Osfi(zo) p, I(x)={i€

i€1(z0)
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Subdifferential calculus

® J(af)(z) = adf(z), for a >0
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Subdifferential calculus

® J(af)(z) = adf(z), for a >0
L3N] = > 98fi(x), fi - convex functions
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Subdifferential calculus

® J(af)(z) = adf(z), for a >0
* 90> fi)(x) = > 0fi(z), fi - convex functions
® I(f(Ax +b))(z) = ATOf(Ax +b), f - convex function
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Subdifferential calculus

Aaf)(z) = adf(x), for a >0

(> fi)(x) =>_ 8fi(x), fi - convex functions

O(f(Az +b))(z) = ATOf(Ax +b), f - convex function
z € Of(x) if and only if z € 9f*(2).
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Algorithm

A vector g is called the subgradient of the function f(z): S — R at the point z¢ if Vz € S:

f(z) > f(@o) + (9,2 — To)
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Algorithm

A vector g is called the subgradient of the function f(z): S — R at the point z¢ if Vz € S:

f(z) > f(@o) + (9,2 — To)

The idea is very simple: let’s replace the gradient V f(z) in the gradient descent algorithm with a subgradient g at
point xy:
Tk4+1 = Tk — Ok Gk,

where gy, is an arbitrary subgradient of the function f(x) at the point xy, gx € 0f(zk)
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Convergence bound

ki1 — 2| = llox — 2" — argell® =

‘f - ;nyul Subgradient Method
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Convergence bound

lorsr — 2*|° = llox — 2* — ongr||® =

= ||k — ="|1* + aillgrl® — 20 (g, Tk — =7)
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Convergence bound
ekt — 2" )|* = [lzn — 2" — argul|” =

= ||k — ="|1* + aillgrl® — 20 (g, Tk — =7)

20 (ge, i — &) = [lan — 2" + o lgill® = lansr — "2
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Convergence bound

k1 —2||? = lox — 2" — ange|® =
= |lzx — ="|1> + aillgrl|” — 20 (gn, k. — )

20 (g, — 2*) = |lan — 2*|° + oillgrll® — llzes — 27|

Let us sum the obtained equality for k =0,...,7 — 1:
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Convergence bound
ekt —2||* = [lox — 2" — argel” =
=z — 2" ||* + aillgrll* — 2an(gr, e — z7)

200 (g, wx — ") = [l — 2| + aillgell* — llznsa — 7|

Let us sum the obtained equality for k =0,...,7 — 1:

T—1 T—1
> 2aulgr,ar —a7) = [lzo — 27| — ler —27|P + ) ailgkll
k=0 k=0
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Convergence bound
[eksr — 2"[* = lox — " — cngrl|® =
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Convergence bound
[eksr — 2"[* = lox — " — cngrl|® =
=z — 2" ||* + aillgrll* — 2an(gr, e — z7)

200 (g, wx — ") = [l — 2| + aillgell* — llznsa — 7|

Let us sum the obtained equality for k =0,...,7 — 1:

T-1 T—1
> 2aulgr,ar —a7) = [lzo — 27| — ler —27|P + ) ailgkll
k=0 k=0
T—-1
<o — 2" 7+ > ailgil
k=0

T—-1
<SR +G?Y o}
k=0

‘f - §“}‘§ Subgradient Method

® |et's write down how close we came to

the optimum z* = arg m%{n f(x) =argf*
xcR”™

on the last iteration:
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Convergence bound

® |et's write down how close we came to

ek —2*))° = ||os — 2% — arg® = the optimum z* = arg n;%{n f(z) = argf*
2CR™
= |lzr — «*|)* + aillgrl® — 20 gk, T — x*) on the last iteration:
® For a subgradient: (gx,xr — ™) <
200 (g, xx — %) = ||zx — 2*|)* + 2 |lgr | = llzrs1 — 2| K =
( ) = llow ="+ aZlgul? = e — o”| For 2 subgragient: fow o

Let us sum the obtained equality for k =0,...,7 — 1:

T-1 T—1
> 2aulgr,ar —a7) = [lzo — 27| — ler —27|P + ) ailgkll
k=0 k=0
T—-1
<o — 2" 7+ > ailgil
k=0

T-1
<H 4GPy ot
k=0

‘fﬁ}fﬂ.}‘; Subgradient Method 0 O 12
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Convergence bound

[eksr — 2"[* = lox — " — cngrl|® =
= [lzk — &1 + aillgrl* — 20k (gr, zx — =)

200 (g, wx — ") = [l — 2| + aillgell* — llznsa — 7|

Let us sum the obtained equality for k =0,...,7 — 1:

T-1

> 2ailgr, ax —27) = [|lzo — 27| — [|lor — 27| +Zakngku
k=0 k=0
T—-1
<o — 2" 7+ > ailgil
k=0

T—-1
<SR +G?Y o}
k=0

‘f - §“}‘§ Subgradient Method

® |et's write down how close we came to
the optimum z* = arg m%{n f(x) =argf*
z€eR™
on the last iteration:
® For a subgradient: (gk,xk — x*) <

flxr) = f(z*) = fzr) —

® We additionaly assume, that Hng2 <G?
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Convergence bound

® |et's write down how close we came to

ek —2*))° = ||os — 2% — arg® = the optimum z* = arg n;%{n f(z) = argf*
2CR™
= |lzr — «*|)* + aillgrl® — 20 gk, T — x*) on the last iteration:
® For a subgradient: (gx xk — x*) <
200 (g, xx — %) = ||zx — 2*|)* + 2 |lgr | = llzrs1 — 2| K =
( ) =l — 2 I + 02l — e — for 2 seberadient (oo

We additionaly assume, that Hng2 <G?
We use the notation R = ||zg — " ||2

Let us sum the obtained equality for k =0,...,7 — 1:

T—1
> 2ailgr, ax —27) = [|lzo — 27| — [|lor — 27| +Zakngku
k=0 k=0
T—-1
<o — 2" 7+ > ailgil
k=0

T
<H 4GPy ot

‘f - §“}‘§ Subgradient Method
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

¥ R?
(gr,zp —2™) < %—l—%GQT

x>
Il

0

‘f - ;nylr; Subgradient Method
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

¥ R?
(gr,zp —2™) < S +%G2T

0

x>
Il

Minimizing the right-hand side by « gives o = g

T—1
> Agry e —2¥) < GRVT.
k=0
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Convergence bound
Assuming ar = « (constant stepsize), we have:

5
L

¥ R?
(gr,zp —2™) < S +%G2T

0

x>
Il

Minimizing the right-hand side by «a gives o™ = g’ / % and

71
> Agry e —2¥) < GRVT.
k=0

f@—1 =1 (} m> —r<y ( (f(an) f*)>
k=0
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Convergence bound
Assuming ar = « (constant stepsize), we have:

5
L

R> a _,
—z") < — 4+ 2G*T
O<gk,1'k x),2a+2

x>
Il

Minimizing the right-hand side by « gives o™ = g’ / % and

T—1
> Agry e —2¥) < GRVT.
k=0

‘f - §“}‘§ Subgradient Method
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Convergence bound
Assuming ar = « (constant stepsize), we have:

5
L

R2

(g, zp — ") < == + %GQT

~ 2«

x>
Il

0

Minimizing the right-hand side by « gives o™ = g’ / % and

T—1
> Agry e —2¥) < GRVT.
k=0
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Convergence bound
Assuming ar = « (constant stepsize), we have:

5
L

R2

(g, zp — ") < == + %GQT

~ 2«

x>
Il

0

Minimizing the right-hand side by « gives o™ = g’ / % and

T—1
> Agry e —2¥) < GRVT.
k=0
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

« R «
{gr, a —27) < o~ +§G2T

x>
Il

0

Minimizing the right-hand side by «a gives o™ = ”% and

71
> Agry e —2¥) < GRVT.
k=0

1 T—1 1 T—1
F@ == F )| < (Do) 1)
k=0 k=0
<1 Tﬁl(ﬂk T —T7)
_T b
k=0
<GR—

‘f - EHA}‘; Subgradient Method

Important notes:

® Obtaining bounds not for z7 but for the
arithmetic mean over iterations T is a
typical trick in obtaining estimates for
methods where there is convexity but no
monotonic decreasing at each iteration.
There is no guarantee of success at each
iteration, but there is a guarantee of
success on average
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

« R «
(g, —27) < 5 +§G2T

x>
Il

0

Minimizing the right-hand side by «a gives o™ = ”% and

71
> Agry e —2¥) < GRVT.
k=0

1 T—1 1 T—1
F@ == F )| < (Do) 1)
k=0 k=0
<1 Tﬁl(ﬂk T —T7)
_T b
k=0
<GR—

‘f - 5“;‘; Subgradient Method

Important notes:

® Obtaining bounds not for z7 but for the
arithmetic mean over iterations T is a
typical trick in obtaining estimates for
methods where there is convexity but no
monotonic decreasing at each iteration.
There is no guarantee of success at each
iteration, but there is a guarantee of
success on average

® To choose the optimal step, we need to
know (assume) the number of iterations
in advance. Possible solution: initialize T’
with a small value, after reaching this
number of iterations double 7" and restart
the algorithm. A more intelligent way:
adaptive selection of stepsize.


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Steepest subgradient descent convergence bound

lzerr — 2% = law — 2" — awgr|® =

‘f - wl} Subgradient Method
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =

= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =
= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =
<gkaxk — JL'*)

TNE (from minimizing right hand side over stepsize)
9k

o =

‘f - Wy‘l} Subgradient Method
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Steepest subgradient descent convergence bound

zks1 — 2" |* = ||z — 2™ — angrl® =
= llow — 2| + aillgrll” — 20n (g, 2x — ") =
*
ap = % (from minimizing right hand side over stepsize)
9k

*\ 2
o — 2*|2 = (g, Tk @ )
llgwll

‘f - Wy‘rﬁ Subgradient Method
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =

= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =

ap = <gk,||5k7||_21'> (from minimizing right hand side over stepsize)
9k
= ||y — 2™ - Sgw, 2 — )"
gl

(gesan = 2")? = (lon = 2"1” = llzner = 271°) Ngull® < (lzx — 27 = [lzngs —27%) G

‘f - Wy‘rﬁ Subgradient Method
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Steepest subgradient descent convergence bound

lxks1 — 3€*||2 = ||lzx — z" — Oékgk||2 =
o

= llok — 2" |1* + aillgsl® — 20 g, zx — 2”)

(gr, Tk — 27)

ap = W (from minimizing right hand side over stepsize)
2 gy — o2 — G ZE— )
llg |2
(g, e — ") = (llor — 2" 1° = llzrer — 2" 1%) llgell® < (low —27|° = llzrs —2"|1*) G
T—1 T—1
(s ae =22 <> (llee =27 ))* = nrs —2|*) G2 < (oo — 2"|]* = ||lor —27||*) G
k=0 k=0

‘f - ;nylr; Subgradient Method
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =
= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =

<gk7$k - (L'*>

fE*Hz) G2

ap = W (from minimizing right hand side over stepsize)
9k
ek 2
= ok — 27| — (g, Tk @ )
gl
(g on — ™) = (lox = 2" I1” = lloerr = 271°) Ngell® < (lze — 2™ = llznes —27[°) G
T-1 T-1
> gwsan =) <D (law = 2" = flansa = 2" ) 6* < (llao — 2" ~ flar —
k=0 k=0
T—1 2 1 T-1
(Z k, Tk — T" > < (gr, T — ") < R°G? Z(gk,xkfxw < GRVT
k=0 k=0 k=0

‘f - ;nylr; Subgradient Method
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =
= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =

<gk7$k - (L'*>

fE*Hz) G2

ap = W (from minimizing right hand side over stepsize)
9k
ek 2
= ok — 27| — (g, Tk @ )
gl
(g on — ™) = (lox = 2" I1” = lloerr = 271°) Ngell® < (lze — 2™ = llznes —27[°) G
T-1 T-1
> gwsan =) <D (law = 2" = flansa = 2" ) 6* < (llao — 2" ~ flar —
k=0 k=0
T—1 2 1 T-1
(Z k, Tk — T" > < (gr, T — ") < R°G? Z(gk,xkfxw < GRVT
k=0 k=0 k=0

‘f - ;nylr; Subgradient Method
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Steepest subgradient descent convergence bound

zher — 2" [|* = ok — 2" — angil® =
= |lox — 2*||* + aillgrll® — 20 (gr, zx — 27) =

(gr, zk — ")

ap = W (from minimizing right hand side over stepsize)
= o — 2|2 — (gr, x, — a*)*
gl
(g on — ™) = (lox = 2”17 = llzerr = 2711°) lgell® < (lzx — 271 = [lzngs —27|%) G
T-1 T-1
(ge,on —2")? < Y (llaw =27 |1” = llzres — 27)1*) G* < (llwo — ")) = llor — 2"||*) G
k=0 k=0
. (T2 2 11 T-1
T ( {gr, K — x*>> < (gr, T — ") < R°G? Z(gk,xk — 2"y < GRVT
k=0 k=0 k=0

Which leads to exactly the same bound of O (%) on the primal gap. In fact, for this class of functions, you can't

1

get a better result than 7=

‘f%;nyu; Subgradient Method D0 O 14
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Convergence results

i Theorem

. —x" 1
Let f be a convex G-Lipschitz function. For a fixed step size a = wq / e subgradient method

satisfies

K-—1
_ « _ Gllzo —z™||2 _ 1
— < - = = — .
f(il’) f = \/F € K kg_o Tq

LN (%) is slow, but already hits the lower bound (O (%) in the strongly convex case).

‘f% fnﬂ Subgradient Method 0 O
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Convergence results

i Theorem

. —x" 1
Let f be a convex G-Lipschitz function. For a fixed step size a = wq | —, subgradient method

satisfies
+ < Gllzo — 7|2

K-1
_ _ 1
f@) —f _T fE:gé%

LN (ﬁ) is slow, but already hits the lower bound (O (%) in the strongly convex case).

® Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several

diminishes strategies).
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Convergence results

i Theorem

. —x" 1
Let f be a convex G-Lipschitz function. For a fixed step size a = wq | —, subgradient method

satisfies
+ < Gllzo — 7|2

K-1
_ _ 1
f@) —f _T fE:gé%

LN (ﬁ) is slow, but already hits the lower bound (O (%) in the strongly convex case).

® Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several

diminishes strategies).
® There is no monotonic decrease of objective.
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Convergence results

Theorem

. —x" 1
Let f be a convex G-Lipschitz function. For a fixed step size a = wq / e subgradient method

satisfies

K—-1
- * G”ZL‘() - CL'*”Q _ 1
— < - = = — .
f@ - < Wive T=5 kg_o Ti

@ (ﬁ) is slow, but already hits the lower bound (O (%) in the strongly convex case).

Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

® There is no monotonic decrease of objective.

Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the
problem structure, we can improve convergence (proximal gradient method).

‘f% 5“.}‘; Subgradient Method 0 O 15
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Convergence results

i Theorem
Let f be a convex G-Lipschitz function and f2* = _min f(x"). For a fixed step size a, subgradient method
satisfies T o
lim 2t < T4 o
i Theorem
Let f be a convex G-Lipschitz function and fP** = Z_:r?inkf(mi). For a diminishing step size oy (square

summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method
satisfies

lim f3* < f*
k— oo

‘f% EHA}‘; Subgradient Method 0 O
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Linear Least Squares with [;-regularization

Algorithm will be written as:

1
min —||Az — b||§ + Mzl
z€R™ 2

Tpt1 = Tk — Ak (AT(A:ck —b)+ )\sign(xk))

where signum function is taken element-wise.

‘f — min
Tz

Applications

Gap to approx. optimal f(x) — f(x )

LLS with /; regularization. 2 runs. A =1

102 4 102 4
1071 A 107 4
1074 A — 1074
E
1077 4 3 10771
10-10 4 10-10 4
10734 10713 4
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration
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Regularized logistic regression

Given (z;,y:) € RP x {0,1} for i = 1,...,n, the logistic regression function is defined as:

n

FO) =" (~yal 0 +10g(1 + exp(a] 0)))

i=1
This is a smooth and convex function with its gradient given by:

n

VIO) =) (i — si(0))

i=1

exp(z?G)

Trexp(:T0)" fori =1,...,n. Consider the regularized problem:

where s;(0) =
f0)+ Ar(0) — mgin

where 7(0) = ||0]|3 for the ridge penalty, or r(8) = ||8||1 for the lasso penalty.

B Somin e ions
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Support Vector Machines

Let D = {(xs,y:) | s € R, y; € {£1}}
We need to find 8 € R™ and b € R such that

. 1
min —

pmin_ 63 +c;max[o,1 yi(0 i + b))

‘f - i Applications
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