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ℓ1-regularized linear least squares
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Norms are not smooth

min
x∈Rn

f(x),

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do
not require smoothness.
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Figure 1: Norm cones for different p - norms are non-smooth
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Wolfe’s example

x1

2
0

2
x 2

2
0

2

-27.00
-15.72
-4.43
6.85
18.13
29.42
40.70
51.98
63.27
74.55

2 0 2
x1

3

2

1

0

1

2

x 2

-15.0 0.0

15.0
30.0

45.0

45.0

60.0

60.0

20

0

20

40

60

Wolfe's example

Figure 2: Wolfe’s example. 3Open in Colab
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Convex function linear lower bound

Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)
• Not all continuous convex functions are

differentiable.

We wouldn’t want to lose such a nice property.
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S → R at a point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The set of all subgradients of a function f(x) at a point x0 is called the subdifferential of f at x0 and is denoted by
∂f(x0).

Figure 4: Subdifferential is a set of all possible subgradients
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Subgradient and subdifferential
Find ∂f(x), if f(x) = |x|

Figure 5: Subdifferential of |x|
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Subdifferential properties
• If x0 ∈ riS, then ∂f(x0) is a convex compact set.

• The convex function f(x) is differentiable at the
point x0 ⇒ ∂f(x0) = {∇f(x0)}.

• If ∂f(x0) ̸= ∅ ∀x0 ∈ S, then f(x) is convex on S.

ñ Subdifferential of a differentiable function

Let f : S → R be a function defined on the set
S in a Euclidean space Rn. If x0 ∈ ri(S) and f
is differentiable at x0, then either ∂f(x0) = ∅ or
∂f(x0) = {∇f(x0)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof

1. Assume, that s ∈ ∂f(x0) for some s ∈ Rn distinct
from ∇f(x0). Let v ∈ Rn be a unit vector. Because
x0 is an interior point of S, there exists δ > 0 such
that x0 + tv ∈ S for all 0 < t < δ. By the definition
of the subgradient, we have

f(x0 + tv) ≥ f(x0) + t⟨s, v⟩

which implies:

f(x0 + tv) − f(x0)
t

≥ ⟨s, v⟩

for all 0 < t < δ. Taking the limit as t approaches 0 and
using the definition of the gradient, we get:

⟨∇f(x0), v⟩ = lim
t→0;0<t<δ

f(x0 + tv) − f(x0)
t

≥ ⟨s, v⟩

2. From this, ⟨s − ∇f(x0), v⟩ ≥ 0. Due to the
arbitrariness of v, one can set

v = − s − ∇f(x0)
∥s − ∇f(x0)∥ ,

leading to s = ∇f(x0).
3. Furthermore, if the function f is convex, then

according to the differential condition of convexity
f(x) ≥ f(x0) + ⟨∇f(x0), x − x0⟩ for all x ∈ S. But
by definition, this means ∇f(x0) ∈ ∂f(x0).
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ñ Subdifferential of a differentiable function

Let f : S → R be a function defined on the set
S in a Euclidean space Rn. If x0 ∈ ri(S) and f
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∂f(x0) = {∇f(x0)}. Moreover, if the function f is
convex, the first scenario is impossible.
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t
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Subdifferential calculus

ñ Moreau - Rockafellar theorem (subdifferential of
a linear combination)

Let fi(x) be convex functions on convex sets Si, i =

1, n. Then if
n⋂

i=1
riSi ̸= ∅ then the function f(x) =

n∑
i=1

aifi(x), ai > 0 has a subdifferential ∂Sf(x) on

the set S =
n⋂

i=1
Si and

∂Sf(x) =
n∑

i=1

ai∂Si fi(x)

ñ Dubovitsky - Milutin theorem (subdifferential of
a point-wise maximum)

Let fi(x) be convex functions on the open convex
set S ⊆ Rn, x0 ∈ S, and the pointwise maximum
is defined as f(x) = max

i
fi(x). Then:

∂Sf(x0) = conv

 ⋃
i∈I(x0)

∂Sfi(x0)

 , I(x) = {i ∈ [1 : m] : fi(x) = f(x)}
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Subdifferential calculus

• ∂(αf)(x) = α∂f(x), for α ≥ 0

• ∂(
∑

fi)(x) =
∑

∂fi(x), fi - convex functions
• ∂(f(Ax + b))(x) = AT ∂f(Ax + b), f - convex function
• z ∈ ∂f(x) if and only if x ∈ ∂f∗(z).
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Algorithm

A vector g is called the subgradient of the function f(x) : S → R at the point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The idea is very simple: let’s replace the gradient ∇f(xk) in the gradient descent algorithm with a subgradient gk at
point xk:

xk+1 = xk − αkgk,

where gk is an arbitrary subgradient of the function f(x) at the point xk, gk ∈ ∂f(xk)
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Convergence bound

∥xk+1 − x∗∥2 = ∥xk − x∗ − αkgk∥2 =

= ∥xk − x∗∥2 + α2
k∥gk∥2 − 2αk⟨gk, xk − x∗⟩

2αk⟨gk, xk − x∗⟩ = ∥xk − x∗∥2 + α2
k∥gk∥2 − ∥xk+1 − x∗∥2

Let us sum the obtained equality for k = 0, . . . , T − 1:

T −1∑
k=0

2αk⟨gk, xk − x∗⟩ = ∥x0 − x∗∥2 − ∥xT − x∗∥2 +
T −1∑
k=0

α2
k∥g2

k∥

≤ ∥x0 − x∗∥2 +
T −1∑
k=0

α2
k∥g2

k∥

≤ R2 + G2
T −1∑
k=0

α2
k

• Let’s write down how close we came to
the optimum x∗ = arg min

x∈Rn
f(x) = argf∗

on the last iteration:
• For a subgradient: ⟨gk, xk − x∗⟩ ≤

f(xk) − f(x∗) = f(xk) − f∗.
• We additionaly assume, that ∥gk∥2 ≤ G2

• We use the notation R = ∥x0 − x∗∥2
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x∈Rn
f(x) = argf∗

on the last iteration:
• For a subgradient: ⟨gk, xk − x∗⟩ ≤

f(xk) − f(x∗) = f(xk) − f∗.
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• We use the notation R = ∥x0 − x∗∥2
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Convergence bound
Assuming αk = α (constant stepsize), we have:

T −1∑
k=0

⟨gk, xk − x∗⟩ ≤ R2

2α
+ α

2 G2T

Minimizing the right-hand side by α gives α∗ = R

G

√
1
T

and
T −1∑
k=0

⟨gk, xk − x∗⟩ ≤ GR
√

T .

f(x) − f∗ = f

(
1
T

T −1∑
k=0

xk

)
− f∗ ≤ 1

T

(
T −1∑
k=0

(f(xk) − f∗)

)

≤ 1
T

(
T −1∑
k=0

⟨gk, xk − x∗⟩

)
≤ GR

1√
T

Important notes:

• Obtaining bounds not for xT but for the
arithmetic mean over iterations x is a
typical trick in obtaining estimates for
methods where there is convexity but no
monotonic decreasing at each iteration.
There is no guarantee of success at each
iteration, but there is a guarantee of
success on average

• To choose the optimal step, we need to
know (assume) the number of iterations
in advance. Possible solution: initialize T
with a small value, after reaching this
number of iterations double T and restart
the algorithm. A more intelligent way:
adaptive selection of stepsize.
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Steepest subgradient descent convergence bound

∥xk+1 − x∗∥2 = ∥xk − x∗ − αkgk∥2 =

= ∥xk − x∗∥2 + α2
k∥gk∥2 − 2αk⟨gk, xk − x∗⟩ ⊜

αk = ⟨gk, xk − x∗⟩
∥gk∥2 (from minimizing right hand side over stepsize)

⊜ ∥xk − x∗∥2 − ⟨gk, xk − x∗⟩2

∥gk∥2

⟨gk, xk − x∗⟩2 =
(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2) ∥gk∥2 ≤

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2)G2

T −1∑
k=0

⟨gk, xk − x∗⟩2 ≤
T −1∑
k=0

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2)G2 ≤

(
∥x0 − x∗∥2 − ∥xT − x∗∥2)G2

1
T

(
T −1∑
k=0

⟨gk, xk − x∗⟩

)2

≤
T −1∑
k=0

⟨gk, xk − x∗⟩2 ≤ R2G2
T −1∑
k=0

⟨gk, xk − x∗⟩ ≤ GR
√

T

Which leads to exactly the same bound of O
(

1√
T

)
on the primal gap. In fact, for this class of functions, you can’t

get a better result than 1√
T

.
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∥xk − x∗∥2 − ∥xk+1 − x∗∥2) ∥gk∥2 ≤

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2)G2

T −1∑
k=0

⟨gk, xk − x∗⟩2 ≤
T −1∑
k=0

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2)G2 ≤

(
∥x0 − x∗∥2 − ∥xT − x∗∥2)G2

1
T

(
T −1∑
k=0

⟨gk, xk − x∗⟩

)2

≤
T −1∑
k=0

⟨gk, xk − x∗⟩2 ≤ R2G2
T −1∑
k=0

⟨gk, xk − x∗⟩ ≤ GR
√

T

Which leads to exactly the same bound of O
(

1√
T

)
on the primal gap. In fact, for this class of functions, you can’t

get a better result than 1√
T

.
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Steepest subgradient descent convergence bound
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Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function. For a fixed step size α = ∥x0 − x∗∥2

G

√
1
K

, subgradient method

satisfies

f(x) − f∗ ≤ G∥x0 − x∗∥2√
K

x = 1
K

K−1∑
k=0

xi

• O
(

1√
T

)
is slow, but already hits the lower bound (O

(
1
T

)
in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

• There is no monotonic decrease of objective.
• Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the

problem structure, we can improve convergence (proximal gradient method).
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Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function and fbest
k = min

i=1,...,k
f(xi). For a fixed step size α, subgradient method

satisfies
lim

k→∞
fbest

k ≤ f∗ + G2α

2

ñ Theorem

Let f be a convex G-Lipschitz function and fbest
k = min

i=1,...,k
f(xi). For a diminishing step size αk (square

summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method
satisfies

lim
k→∞

fbest
k ≤ f∗
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Linear Least Squares with l1-regularization

min
x∈Rn

1
2∥Ax − b∥2

2 + λ∥x∥1

Algorithm will be written as:

xk+1 = xk − αk

(
A⊤(Axk − b) + λsign(xk)

)
where signum function is taken element-wise.
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Figure 6: Illustration 3Open in Colab
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Regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, . . . , n, the logistic regression function is defined as:

f(θ) =
n∑

i=1

(
−yix

T
i θ + log(1 + exp(xT

i θ))
)

This is a smooth and convex function with its gradient given by:

∇f(θ) =
n∑

i=1

(yi − si(θ)) xi

where si(θ) = exp(xT
i θ)

1+exp(xT
i

θ) , for i = 1, . . . , n. Consider the regularized problem:

f(θ) + λr(θ) → min
θ

where r(θ) = ∥θ∥2
2 for the ridge penalty, or r(θ) = ∥θ∥1 for the lasso penalty.
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Support Vector Machines

Let D = {(xi, yi) | xi ∈ Rn, yi ∈ {±1}}

We need to find θ ∈ Rn and b ∈ R such that

min
θ∈Rn,b∈R

1
2∥θ∥2

2 + C

m∑
i=1

max[0, 1 − yi(θ⊤xi + b)]
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