Subgradient Method. Specifics of non-smooth problems.
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Norms are not smooth

min f(z),

A classical convex optimization problem is considered. We assume that f(z) is a convex function, but now we do

not require smoothness.
p = Norm Cone

p =1 Norm Cone

p =2 Norm Cone

2.00
175
1.50
1.25
1.00
0.75
0.50
0.25

1.0
0.5

0.0 .
' -0.5

o5 7 |
x 05 “10

0.0
05
x 10 "0 1.0

0.5 ~1.0

-1.0
-0.5

Figure 1: Norm cones for different p - norms are non-smooth
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Wolfe’'s example

R /— min

Non-smooth problems

Wolfe's example

Figure 2: Wolfe's example. ®Open in Colab

60

40

20

=20


https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/subgrad.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convex function linear lower bound

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(zo) + (9,2 — o)
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Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function
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Subgradient calculus

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(zo) + (9,2 — o)

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

e If f(z) is differentiable, then g = V f(z0)
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Subgradient calculus

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(zo) + (9,2 — o)

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.
e If f(z) is differentiable, then g = V f(z0)
® Not all continuous convex functions are
differentiable.
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Subgradient calculus

An important property of a continuous convex
function f(z) is that at any chosen point zg
for all z € dom f the inequality holds:

f(@) = f(zo) + (9,2 — o)

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.
e If f(z) is differentiable, then g = V f(z0)
® Not all continuous convex functions are
differentiable.
We wouldn't want to lose such a nice property.
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)

The set of all subgradients of a function f(z) at a point zo is called the subdifferential of f at zo and is denoted by

Of (zo).
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S — R at a point ¢ if Yz € S:

f(z) > f(xo) + (9,2 — To)

The set of all subgradients of a function f(z) at a point zo is called the subdifferential of f at zo and is denoted by

Of (zo).

[_92] df(z0) = [g1; 92|
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) Figure 4: Subdifferential is a set of all possible subgradients
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Subgradient and subdifferential
Find 0f (), if f(z) = |z|
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Subgradient and subdifferential

Find 0f (), if f(z) = |z|

f(z) = |z|
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Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.
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Subdifferential properties

® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point o = af(l’o) = {Vf(ito)}
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Subdifferential properties
® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point xg = 8f(1:0) = {Vf(l’o)}
® If0f(xo) #0 Vxzo € S, then f(x) is convex on S.

Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R"™. If z¢ € ri(S) and f
is differentiable at zo, then either Of(zo) = 0 or
Of(zo) = {V f(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.
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Subdifferential properties
® If 2y € riS, then Of(xo) is a convex compact set.
® The convex function f(z) is differentiable at the
point xg = 8f(1:0) = {Vf(l’o)}
® If0f(xo) #0 Vxzo € S, then f(x) is convex on S.

Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R"™. If z¢ € ri(S) and f
is differentiable at zo, then either Of(zo) = 0 or
Of(zo) = {V f(z0)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof
1. Assume, that s € 0f(xo) for some s € R™ distinct
from V f(xo). Let v € R™ be a unit vector. Because
Zo is an interior point of S, there exists § > 0 such
that o +tv € S for all 0 <t < §. By the definition
of the subgradient, we have

f@o +tv) > f(zo) + t(s,v)

— mi :
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Subdifferential properties
® |f zyp € riS, then Of(xo) is a convex compact set.  which implies:
® The convex function f(z) is differentiable at the
point 2o = Of (z0) = {V f(z0)}. flwoFt0) = f(@o) & (g o
® If0f(xo) #0 Vxzo € S, then f(x) is convex on S. t
for all 0 < t < §. Taking the limit as ¢ approaches 0 and
using the definition of the gradient, we get:

Subdifferential of a differentiable function

Let f : S — R be a function defined on the set (Vf(zo),v) = lim f(zo +tv) — f(zo0) > (s,)

S in a Euclidean space R"™. If z¢ € ri(S) and f t—0;0<t<5 t

is differentiable at zo, then either df(zo) = 0 or .

df(xo) = {V f(zo)}. Moreover, if the function f is 2 Frlcj)_m tf_ns, (s ? V(20),v) 2 0. Due to the
convex, the first scenario is impossible. arbitrariness of v, one can set

yo 5= V(o)
Proof Is = Vf(zo)l’
1. Assume, that s € 0f(xo) for some s € R™ distinct ]
from V f(xo). Let v € R™ be a unit vector. Because leading to s =V f (o).

Zo is an interior point of S, there exists § > 0 such
that o +tv € S for all 0 <t < §. By the definition
of the subgradient, we have

f@o +tv) > f(zo) + t(s,v)
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Subgradient calculus

‘f — min
Ty

which implies:

f(zo +tv) = f(wo)
t

> (s,v)

for all 0 < t < §. Taking the limit as ¢ approaches 0 and
using the definition of the gradient, we get:

lim f(zo +tv) — f(wo)

t—0;0<t<d t

<Vf($0),v> = > <87U>

2. From this, (s — V f(x0),v) > 0. Due to the
arbitrariness of v, one can set

_ 8= V f(zo)
l|s = V£ (@o)ll’

leading to s = V f(zo).

3. Furthermore, if the function f is convex, then
according to the differential condition of convexity
f(x) > f(zo) + (Vf(xo),z — z0) for all z € S. But
by definition, this means V f(z0) € f(zo).

0 O 8
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Subdifferential calculus

Moreau - Rockafellar theorem (subdifferential of a
linear combination)

Let fi(x) be convex functions on convex sets S;, i =
n

1,n. Then if () riS; # 0 then the function f(z) =

=1

a;fi(x), a; > 0 has a subdifferential ds f(x) on

-

i=1

the set S = [ S; and

1=1

n

dsf(x) =) aids, filz)

i=1
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Subdifferential calculus

Moreau - Rockafellar theorem (subdifferential of a Dubovitsky - Milutin theorem (subdifferential of a

linear combination) point-wise maximum)

Let f;(x) be convex functions on convex sets S;, ¢ = Let fi(x) be convex functions on the open convex
n

set S CR", 2o € S, and the pointwise maximum

I,n. Then if () riS; # 0 then the function f(x) = is defined as f(x) — max i(x). Then:

=1

a;fi(x), a; > 0 has a subdifferential ds f(x) on

-

i=1

the set S — ﬁsi and Osf(zo) =conv( | | Osfilwo) p, I(@)={ic]

i=1 i€1(z0)

n

dsf(x) =) aids, filz)

i=1

‘f‘”,,'_‘.jr; Subgradient calculus 0 O 9


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Subdifferential calculus

® J(af)(z) = adf(z), for a >0
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Subdifferential calculus

z), fora >0
> 0fi(z), fi - convex functions
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Subdifferential calculus

° Jaf)(z) =adf(x), fora>0
* 9> fi)(x) = > 0fi(x), fi - convex functions
® O(f(Azx +b))(xz) = ATOf(Axz + b), f - convex function
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Subdifferential calculus

daf)(z) = adf(z), fora >0

o> fi)(x) = >_ 8fi(x), fi - convex functions

A(f(Az +b))(x) = ATOf(Ax + b), f - convex function
z € Of(x) if and only if z € 9f*(2).
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Algorithm

A vector g is called the subgradient of the function f(z): S — R at the point z¢ if Vz € S:

f(z) > f(@o) + (9,2 — To)
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Algorithm

A vector g is called the subgradient of the function f(z): S — R at the point z¢ if Vz € S:

f(z) > f(@o) + (9,2 — To)

The idea is very simple: let's replace the gradient V f(z) in the gradient descent algorithm with a subgradient g at
point xy:
Tk+1 = Tk — QkGk,

where gy, is an arbitrary subgradient of the function f(x) at the point xy, gx € 0f(zk)

‘f‘”.,l.‘.jr; Subgradient Method 0 O 11
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Convergence bound

lonsn — 2*)° = llzx — 2* — ongn||® =
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Convergence bound

lzhsr —2*)° = lloe — 2 — angnl” =

= ||k — ="|1* + aillgel® — 20 (g, 7k — =*)
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Convergence bound
2hs1 = a™|* = [lzn — 2" — angel* =

= ||k — ="|1* + aillgel® — 20 (g, 7k — =*)

200 (g, — 2°) = |lak — 2*||* + aillgrll® = llzesr — 27|
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Convergence bound

lzhsr —2*)° = lloe — 2 — angnl” =
= ||k — ="|1* + aillgel® — 20 (g, 7k — =*)

200 (g, — 2°) = |lak — 2*||* + aillgrll® = llzesr — 27|

Let us sum the obtained equality for k =0,...,7 — 1:
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k=0
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Convergence bound
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< R2 + G2 Zak
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‘f -+ ].".}2 Subgradient Method

® | et's write down how close we came to

the optimum z* = arg m%{n f(x) =argf*
LCR™

on the last iteration:
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Convergence bound

® | et's write down how close we came to

lzker — a*|)° = ||zx — 2 — cngil)® = the optimum z* = arg né%{n f(z) = argf”
2ERT
= |lzr — «*|)* + arllgrl® — 20 gk, T — x*) on the last iteration:
* ® For a subgradient: (gx,xr — ™) <
200 gi, T — ) = ||z — 2 ||* + &d|gkl]® = |zrg1 — z¥|)? K . =

Let us sum the obtained equality for k =0,...,7 — 1:

T—1 T—1
> 2ailgr,ar —a7) = [lzo — 27| — ler —27|P + ) ai|gkll
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Convergence bound

lzhsr —2*)° = lloe — 2 — angnl” =
= |lzx — 2"|1> + aillgrl|” — 2a(gn, zr — )

200 (g, — 2°) = |lak — 2*||* + aillgrll® = llzesr — 27|

Let us sum the obtained equality for k =0,...,7 — 1:

T—1 T—1
> 2ailgr,ar —a7) = [lzo — 27| — ler —27|P + ) ai|gkll

k=0 k=0
T—1
<o — 2" 7+ > aillgil
k=0
T—1
< R2 + G2 Zak
k=0

‘f -+ ].".}I; Subgradient Method

® | et's write down how close we came to
the optimum z* = arg m%{n f(x) =argf*
LCR™
on the last iteration:
® For a subgradient: (gx,xr — ™) <
f(xe) = f(z") = flar) — "

® We additionaly assume, that ||gx||? < G?
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Convergence bound

® | et's write down how close we came to

lzker — a*|)° = ||zx — 2 — cngil)® = the optimum z* = arg né%{n f(z) = argf”
2ERT
= |lzr — «*|)* + arllgrl® — 20 gk, T — x*) on the last iteration:
* ® For a subgradient: (gx,xr — ™) <
200 gi, T — ) = ||z — 2 ||* + &d|gkl]® = |zrg1 — z¥|)? K . =

We additionaly assume, that ||gx > < G?
We use the notation R = ||zo — " ||2

Let us sum the obtained equality for k =0,...,7 — 1:

T—1 T—1
> 2ailgr,ar —a7) = [lzo — 27| — ler —27|P + ) ai|gkll

k=0 k=0
T—1
<o — 2" 7+ > aillgil
k=0
T—1
< R2 + G2 Zak
k=0
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

¥ R?
(gr,zp —2™) < % +%G2T

El
Il

0
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Convergence bound

Assuming ar = « (constant stepsize), we have:

5
L

# R?
(g, o —27) < 5 +%GQT

0

El
Il

Minimizing the right-hand side by «a gives a* = g

T—1
> gk, e —x¥) < GRVT.
k=0
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Convergence bound
Assuming ar = « (constant stepsize), we have:

5
L

. R?
(g, o —27) < 5 +%G2T

0

El
Il

Minimizing the right-hand side by « gives o™ = g, / % and

71
> gk, 2k — z¥) < GRVT.
k=0

f@—1 =1 (} x> —r<y ( (f(an) —f*)>
k=0

‘f -+ ].".}2 Subgradient Method
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Convergence bound
Assuming ar = « (constant stepsize), we have:
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Convergence bound
Assuming ar = « (constant stepsize), we have:
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Convergence bound
Assuming ar = « (constant stepsize), we have:
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(g, o —27) < 5 +%G2T
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Convergence bound

Assuming ar = « (constant stepsize), we have:

;

. R?
(g, o —27) < 5 +%G2T

El
Il

0

Minimizing the right-hand side by « gives o™ = H% and

T—1
> gk, 2k — z¥) < GRVT.
k=0

1 T—-1 1 T—-1
F@ == F ) m | < (Do) 1)
k=0 k=0
1 T-1
<z (g, x — 27)
k=0
< GR——

‘f -+ ].”.}I; Subgradient Method

Important notes:

® Obtaining bounds not for z7 but for the
arithmetic mean over iterations T is a
typical trick in obtaining estimates for
methods where there is convexity but no
monotonic decreasing at each iteration.
There is no guarantee of success at each
iteration, but there is a guarantee of
success on average
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Convergence bound

Assuming ar = « (constant stepsize), we have:

;

. R?
(g, o —27) < 5 +%G2T

0

El
Il

Minimizing the right-hand side by « gives o™ = H% and

T—1
> gk, 2k — z¥) < GRVT.
k=0

1 T—-1 1 T—-1
F@ == F ) m | < (Do) 1)
k=0 k=0
1 T-1
<z (g, x — 27)
k=0
< GR——

‘f -+ ].”.}I; Subgradient Method

Important notes:

® Obtaining bounds not for z7 but for the
arithmetic mean over iterations T is a
typical trick in obtaining estimates for
methods where there is convexity but no
monotonic decreasing at each iteration.
There is no guarantee of success at each
iteration, but there is a guarantee of
success on average

® To choose the optimal step, we need to
know (assume) the number of iterations
in advance. Possible solution: initialize T’
with a small value, after reaching this
number of iterations double 7" and restart
the algorithm. A more intelligent way:
adaptive selection of stepsize.
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Steepest subgradient descent convergence bound

|y — $*||2 = ||lzx — z" - akgk||2 =

‘f -+ ]'T"}Il Subgradient Method
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Steepest subgradient descent convergence bound

[zher — 2" [|* = |lox — 2" — angil® =

= [lox — 2 ||* + aillgrll® — 20 (gr, zx — 27) =
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Steepest subgradient descent convergence bound

[zher — 2" [|* = |lox — 2" — angil® =
= [lox — 2 ||* + aillgrll® — 20 (gr, zx — 27) =
<gk,-Tk — $*>

EE (from minimizing right hand side over stepsize)
9k

A =

‘f -+ 1’11'}2 Subgradient Method
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Steepest subgradient descent convergence bound

k1 —2"||* = ok — 2" — angell* =
= llok — 2" |* + aillgsl® — 20n gk, 2 — ") =
*
ap = % (from minimizing right hand side over stepsize)
9k

*\ 2
lon — 2*|2 = {gr, Tk @ )
llgll

‘f -+ ].n:}r; Subgradient Method
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Steepest subgradient descent convergence bound

k1 —2"||* = ok — 2" — angell* =
= llok — 2" |* + aillgsl® — 20n gk, 2 — ") =
*
ap = % (from minimizing right hand side over stepsize)
9k

*\ 2
lon — 2*|2 = {gr, Tk @ )
llgll

(g, ze —27)* = (low = 2"1° = loeer = 2" 1°) lgrll® < (lox = 2"I° = Nz —27|%) G2

‘f -+ ].n:}r; Subgradient Method
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Steepest subgradient descent convergence bound

lzhr1 — 21> = llzk — 2" — angull” =
= |l — 2"|)* + aillgrl|* — 2an(gr, x — a") =

<gk,-Tk — $*>

ap = W (from minimizing right hand side over stepsize)
9k
= ||z — 2™ - Sgw, 2 — )"
73l

(g, —a")? (ka = 2"|* = flnpr = 2" I°) lgnl® < (llzx = 27I° = lwrsr — 27(%) G
T-1 T—

(gr, o — 2" Z lzx = 271 = llzes = 27)%) G2 < (llvo — 2"|)* = or — =*|*) G°
k=0 k=0

2

‘f -+ ].n:}r; Subgradient Method Q0
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Steepest subgradient descent convergence bound

lzhr1 — 21> = llzk — 2" — angull” =
= |l — 2"|)* + aillgrl|* — 2an(gr, x — a") =

<gk,-Tk — I*>

a
llgl?

(from minimizing right hand side over stepsize)

2 gk, xr —x")?
llg 2
(grroe — ") = (lox = 2"|” = oner = 7)) llgell* < (o = 27)* = zrsr —2*|°) G
T—-1

T—1
D g =) <> (lon =271 = llzner = 27)°) G < (oo — 2" = [lzr — 27|)%) G
k=0

[

k=0
T—1 2 1 T-1

(Z gk, Tp — > < (gr,zx — 2*)? < R’G? Z(gk,wk—w*> < GRVT
k=0 k=0 k=0

2

‘f -+ ].n:}r; Subgradient Method Q0
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Steepest subgradient descent convergence bound

lzhr1 — 21> = llzk — 2" — angull” =
= |l — 2"|)* + aillgrl|* — 2an(gr, x — a") =

<gk,-Tk — I*>

a
llgl?

(from minimizing right hand side over stepsize)

2 gk, xr —x")?
llg 2
(grroe — ") = (lox = 2"|” = oner = 7)) llgell* < (o = 27)* = zrsr —2*|°) G
T—-1

T—1
D g =) <> (lon =271 = llzner = 27)°) G < (oo — 2" = [lzr — 27|)%) G
k=0

[

k=0
T—1 2 1 T-1

(Z gk, Tp — > < (gr,zx — 2*)? < R’G? Z(gk,wk—w*> < GRVT
k=0 k=0 k=0
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Steepest subgradient descent convergence bound

lzhr1 — 21> = llzk — 2" — angull” =
= llew — 2| + aillgrll® — 20n (g, zx — ") =
*
ap = % (from minimizing right hand side over stepsize)
9k
o — 2|2 — (gr, x — a*)*
73l

(g, an = 27)* = (low — 2" = lorsr = 271°) llgrl® < (low = 2"° = o —27|%) G2

T-1 T-1
(g e —2")* <Y (lw = ) = llener —2"|F) G < (oo = 27| = [lor — %) G2
k=0 k=0
. (X2 2 11 T-1
T (Z(gk,m - x*)> <Y gr,axr — %)’ < R?G? Z(gk,xk —z*) < GRVT
k=0 k=0 k=0

Which leads to exactly the same bound of O ( 1 ) on the primal gap. In fact, for this class of functions, you can't

5

1
get a better result than 77

‘f‘”,".ﬂ Subgradient Method D0 O 14
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Convergence results

Theorem

. —z* /1 .
Let f be a convex G-Lipschitz function. For a fixed step size a = w —, subgradient method

satisfies

x

-1
e _Glzo—alls 1
f@ - f Siﬁ x—ka

T
0

e O (i) is slow, but already hits the lower bound (O (

= ) in the strongly convex case).

1
T

‘f‘”.".ﬂ Subgradient Method 0 O
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Convergence results

Theorem

. —z” 1
Let f be a convex G-Lipschitz function. For a fixed step size a = w1 / N subgradient method

satisfies

x

-1
* G”{E()*:E*”Q 7= 1

f@—-f< Vi Ek

T

Il
o

1 . . 1)\ -
e O (ﬁ) is slow, but already hits the lower bound (O (T) in the strongly convex case).
® Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several

diminishes strategies).

‘f -+ ].".}I; Subgradient Method
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Convergence results

Theorem

. —z” 1
Let f be a convex G-Lipschitz function. For a fixed step size a = w1 / N subgradient method

satisfies

x

-1
* G”{E()*:E*”Q 7= 1

f@—-f< Vi Ek

T

Il
o

1 . . 1)\ -
e O (ﬁ) is slow, but already hits the lower bound (O (T) in the strongly convex case).
® Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several

diminishes strategies).
® There is no monotonic decrease of objective.
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Convergence results

Theorem

. —z” 1
Let f be a convex G-Lipschitz function. For a fixed step size a = wq / N subgradient method

satisfies

x

-1
_ « _ Gllzo —z™||2 _ 1

— < = —
@ - s TR D

T
0

@ (ﬁ) is slow, but already hits the lower bound (O (%) in the strongly convex case).

Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

® There is no monotonic decrease of objective.

® Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the
problem structure, we can improve convergence (proximal gradient method).

‘f -+ ].”.}I; Subgradient Method 0 O
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Convergence results

Theorem
Let f be a convex G-Lipschitz function and fP** = min f(z*). For a fixed step size a, subgradient method
i=1,...,
satisfies )
lim i < g+ E2
k—o0 2
Theorem
Let f be a convex G-Lipschitz function and ff** = min kf(ml) For a diminishing step size oy (square
i=1,...

yeeey

summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method
satisfies

lim f}?est S f*
kE— oo

‘f‘”.,l.‘.jr; Subgradient Method 0 O
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Linear Least Squares with [;-regularization
min 1HAJ: — 0|3+ Al
zeR™ 2 2 !
Algorithm will be written as:
T .
Tpt1 = Tk — Ak (A (Azk — b) + Asngn(mk))

where signum function is taken element-wise.

LLS with /; regularization. 2 runs. A =1

510 10?4

=

|

= 1074 107 4

=

T 1074 — 1074

=% X

© 10774 3 10771

x

2

& 10—10 4 10—10 4

©

S

< 10713 1 10-13

©

Q
T T T T T T T T T T T T
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iteration iteration

‘ f= ].nﬂ Applications
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Regularized logistic regression

Given (z;,y:) € RP x {0,1} for i = 1,...,n, the logistic regression function is defined as:
FO) =" (—viwl 0 +log(1 + exp(]0)))
i=1

This is a smooth and convex function with its gradient given by:

n

VIO) =) (i — si(0)) @

i=1

exp(z?O)

Trexp(:T0)" fori =1,...,n. Consider the regularized problem:

where s;(0) =
f0)+ Ar(0) — mein

where 7(0) = ||0]|3 for the ridge penalty, or r(8) = ||8||1 for the lasso penalty.

‘ f= ].".}2 Applications
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Support Vector Machines

Let D = {(ac,-,yi) | xT; € R"7yi S {:l:l}}
We need to find 8 € R™ and b € R such that

. 1
min -
O€R™ ,beR 2

‘ f= ].nﬂ Applications

1613+ € max(0,1 = yi(6" w; +b)]

i=1
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