Subgradient Method. Specifics of non-smooth problems.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

ℓ_{1}-regularized linear least squares
ℓ_{1} induces sparsity

@fminxyz

Norms are not smooth

$$
\min _{x \in \mathbb{R}^{n}} f(x),
$$

A classical convex optimization problem is considered. We assume that $f(x)$ is a convex function, but now we do not require smoothness.
$p=1$ Norm Cone
$p=2$ Norm Cone
$p=\infty$ Norm Cone

Figure 1: Norm cones for different p - norms are non-smooth

Wolfe's example

Wolfe's example

Figure 2: Wolfe's example. なOpen in Colab

Convex function linear lower bound

An important property of a continuous convex function $f(x)$ is that at any chosen point x_{0} for all $x \in \operatorname{dom} f$ the inequality holds:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Convex function linear lower bound

An important property of a continuous convex function $f(x)$ is that at any chosen point x_{0} for all $x \in \operatorname{dom} f$ the inequality holds:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

for some vector g, i.e., the tangent to the graph of the function is the global estimate from below for the function.

- If $f(x)$ is differentiable, then $g=\nabla f\left(x_{0}\right)$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Convex function linear lower bound

An important property of a continuous convex function $f(x)$ is that at any chosen point x_{0} for all $x \in \operatorname{dom} f$ the inequality holds:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

for some vector g, i.e., the tangent to the graph of the function is the global estimate from below for the function.

- If $f(x)$ is differentiable, then $g=\nabla f\left(x_{0}\right)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Convex function linear lower bound

An important property of a continuous convex function $f(x)$ is that at any chosen point x_{0} for all $x \in \operatorname{dom} f$ the inequality holds:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

for some vector g, i.e., the tangent to the graph of the function is the global estimate from below for the function.

- If $f(x)$ is differentiable, then $g=\nabla f\left(x_{0}\right)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Convex function linear lower bound

An important property of a continuous convex function $f(x)$ is that at any chosen point x_{0}
 for all $x \in \operatorname{dom} f$ the inequality holds:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

for some vector g, i.e., the tangent to the graph of the function is the global estimate from below for the function.

- If $f(x)$ is differentiable, then $g=\nabla f\left(x_{0}\right)$
- Not all continuous convex functions are differentiable.
We wouldn't want to lose such a nice property.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient and subdifferential

A vector g is called the subgradient of a function $f(x): S \rightarrow \mathbb{R}$ at a point x_{0} if $\forall x \in S$:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Subgradient and subdifferential

A vector g is called the subgradient of a function $f(x): S \rightarrow \mathbb{R}$ at a point x_{0} if $\forall x \in S$:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

The set of all subgradients of a function $f(x)$ at a point x_{0} is called the subdifferential of f at x_{0} and is denoted by $\partial f\left(x_{0}\right)$.

Subgradient and subdifferential

A vector g is called the subgradient of a function $f(x): S \rightarrow \mathbb{R}$ at a point x_{0} if $\forall x \in S$:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

The set of all subgradients of a function $f(x)$ at a point x_{0} is called the subdifferential of f at x_{0} and is denoted by $\partial f\left(x_{0}\right)$.

Figure 4: Subdifferential is a set of all possible subgradients

Subgradient and subdifferential

 Find $\partial f(x)$, if $f(x)=|x|$
Subgradient and subdifferential

 Find $\partial f(x)$, if $f(x)=|x|$$$
f(x)=|x|
$$

$\partial f(x)$

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

Subdifferential of a differentiable function
Let $f: S \rightarrow \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^{n}. If $x_{0} \in \mathbf{r i}(S)$ and f is differentiable at x_{0}, then either $\partial f\left(x_{0}\right)=\emptyset$ or $\partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$. Moreover, if the function f is convex, the first scenario is impossible.

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

Subdifferential of a differentiable function
Let $f: S \rightarrow \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^{n}. If $x_{0} \in \mathbf{r i}(S)$ and f is differentiable at x_{0}, then either $\partial f\left(x_{0}\right)=\emptyset$ or $\partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f\left(x_{0}\right)$ for some $s \in \mathbb{R}^{n}$ distinct from $\nabla f\left(x_{0}\right)$. Let $v \in \mathbb{R}^{n}$ be a unit vector. Because x_{0} is an interior point of S, there exists $\delta>0$ such that $x_{0}+t v \in S$ for all $0<t<\delta$. By the definition of the subgradient, we have

$$
f\left(x_{0}+t v\right) \geq f\left(x_{0}\right)+t\langle s, v\rangle
$$

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set.
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

Subdifferential of a differentiable function
Let $f: S \rightarrow \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^{n}. If $x_{0} \in \mathbf{r i}(S)$ and f is differentiable at x_{0}, then either $\partial f\left(x_{0}\right)=\emptyset$ or $\partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f\left(x_{0}\right)$ for some $s \in \mathbb{R}^{n}$ distinct from $\nabla f\left(x_{0}\right)$. Let $v \in \mathbb{R}^{n}$ be a unit vector. Because x_{0} is an interior point of S, there exists $\delta>0$ such that $x_{0}+t v \in S$ for all $0<t<\delta$. By the definition of the subgradient, we have

$$
f\left(x_{0}+t v\right) \geq f\left(x_{0}\right)+t\langle s, v\rangle
$$

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set. which implies:
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

$$
\frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \geq\langle s, v\rangle
$$

for all $0<t<\delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$
\left\langle\nabla f\left(x_{0}\right), v\right\rangle=\lim _{t \rightarrow 0 ; 0<t<\delta} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \geq\langle s, v\rangle
$$

2. From this, $\left\langle s-\nabla f\left(x_{0}\right), v\right\rangle \geq 0$. Due to the arbitrariness of v, one can set

$$
v=-\frac{s-\nabla f\left(x_{0}\right)}{\left\|s-\nabla f\left(x_{0}\right)\right\|}
$$

leading to $s=\nabla f\left(x_{0}\right)$.

Proof

1. Assume, that $s \in \partial f\left(x_{0}\right)$ for some $s \in \mathbb{R}^{n}$ distinct from $\nabla f\left(x_{0}\right)$. Let $v \in \mathbb{R}^{n}$ be a unit vector. Because x_{0} is an interior point of S, there exists $\delta>0$ such that $x_{0}+t v \in S$ for all $0<t<\delta$. By the definition of the subgradient, we have

$$
f\left(x_{0}+t v\right) \geq f\left(x_{0}\right)+t\langle s, v\rangle
$$

Subdifferential properties

- If $x_{0} \in \mathbf{r i} S$, then $\partial f\left(x_{0}\right)$ is a convex compact set. which implies:
- The convex function $f(x)$ is differentiable at the point $x_{0} \Rightarrow \partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$.
- If $\partial f\left(x_{0}\right) \neq \emptyset \quad \forall x_{0} \in S$, then $f(x)$ is convex on S.

$$
\frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \geq\langle s, v\rangle
$$

for all $0<t<\delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$
\left\langle\nabla f\left(x_{0}\right), v\right\rangle=\lim _{t \rightarrow 0 ; 0<t<\delta} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \geq\langle s, v\rangle
$$

2. From this, $\left\langle s-\nabla f\left(x_{0}\right), v\right\rangle \geq 0$. Due to the arbitrariness of v, one can set

$$
v=-\frac{s-\nabla f\left(x_{0}\right)}{\left\|s-\nabla f\left(x_{0}\right)\right\|}
$$

leading to $s=\nabla f\left(x_{0}\right)$.
3. Furthermore, if the function f is convex, then according to the differential condition of convexity $f(x) \geq f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle$ for all $x \in S$. But by definition, this means $\nabla f\left(x_{0}\right) \in \partial f\left(x_{0}\right)$.

$$
f\left(x_{0}+t v\right) \geq f\left(x_{0}\right)+t\langle s, v\rangle
$$

Proof

1. Assume, that $s \in \partial f\left(x_{0}\right)$ for some $s \in \mathbb{R}^{n}$ distinct from $\nabla f\left(x_{0}\right)$. Let $v \in \mathbb{R}^{n}$ be a unit vector. Because x_{0} is an interior point of S, there exists $\delta>0$ such that $x_{0}+t v \in S$ for all $0<t<\delta$. By the definition of the subgradient, we have

Subdifferential calculus

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_{i}(x)$ be convex functions on convex sets $S_{i}, i=$ $\overline{1, n}$. Then if $\bigcap_{i=1}^{n} \mathbf{r i} S_{i} \neq \emptyset$ then the function $f(x)=$ $\sum_{i=1}^{n} a_{i} f_{i}(x), a_{i}>0$ has a subdifferential $\partial_{S} f(x)$ on the set $S=\bigcap_{i=1}^{n} S_{i}$ and

$$
\partial_{S} f(x)=\sum_{i=1}^{n} a_{i} \partial_{S_{i}} f_{i}(x)
$$

Subdifferential calculus

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_{i}(x)$ be convex functions on convex sets $S_{i}, i=$ $\overline{1, n}$. Then if $\bigcap_{i=1}^{n} \mathbf{r i} S_{i} \neq \emptyset$ then the function $f(x)=$ $\sum_{i=1}^{n} a_{i} f_{i}(x), a_{i}>0$ has a subdifferential $\partial_{S} f(x)$ on the set $S=\bigcap_{i=1}^{n} S_{i}$ and

$$
\partial_{S} f(x)=\sum_{i=1}^{n} a_{i} \partial_{S_{i}} f_{i}(x)
$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let $f_{i}(x)$ be convex functions on the open convex set $S \subseteq \mathbb{R}^{n}, x_{0} \in S$, and the pointwise maximum is defined as $f(x)=\max _{i} f_{i}(x)$. Then:

$$
\partial_{S} f\left(x_{0}\right)=\operatorname{conv}\left\{\bigcup_{i \in I\left(x_{0}\right)} \partial_{S} f_{i}\left(x_{0}\right)\right\}, \quad I(x)=\{i \in
$$

Subdifferential calculus

- $\partial(\alpha f)(x)=\alpha \partial f(x)$, for $\alpha \geq 0$

Subdifferential calculus

- $\partial(\alpha f)(x)=\alpha \partial f(x)$, for $\alpha \geq 0$
- $\partial\left(\sum f_{i}\right)(x)=\sum \partial f_{i}(x), f_{i}$ - convex functions

Subdifferential calculus

- $\partial(\alpha f)(x)=\alpha \partial f(x)$, for $\alpha \geq 0$
- $\partial\left(\sum f_{i}\right)(x)=\sum \partial f_{i}(x), f_{i}$ - convex functions
- $\partial(f(A x+b))(x)=A^{T} \partial f(A x+b), f$ - convex function

Subdifferential calculus

- $\partial(\alpha f)(x)=\alpha \partial f(x)$, for $\alpha \geq 0$
- $\partial\left(\sum f_{i}\right)(x)=\sum \partial f_{i}(x), f_{i}$ - convex functions
- $\partial(f(A x+b))(x)=A^{T} \partial f(A x+b), f$ - convex function
- $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$.

Algorithm

A vector g is called the subgradient of the function $f(x): S \rightarrow \mathbb{R}$ at the point x_{0} if $\forall x \in S$:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Algorithm

A vector g is called the subgradient of the function $f(x): S \rightarrow \mathbb{R}$ at the point x_{0} if $\forall x \in S$:

$$
f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

The idea is very simple: let's replace the gradient $\nabla f\left(x_{k}\right)$ in the gradient descent algorithm with a subgradient g_{k} at point x_{k} :

$$
x_{k+1}=x_{k}-\alpha_{k} g_{k},
$$

where g_{k} is an arbitrary subgradient of the function $f(x)$ at the point $x_{k}, g_{k} \in \partial f\left(x_{k}\right)$

Convergence bound

$$
\left\|x_{k+1}-x^{*}\right\|^{2}=\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}=
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle=\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\|
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\|
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq R^{2}+G^{2} \sum_{k=0}^{T-1} \alpha_{k}^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

- Let's write down how close we came to the optimum $x^{*}=\arg \min _{x \in \mathbb{R}^{n}} f(x)=\arg f^{*}$ on the last iteration:

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq R^{2}+G^{2} \sum_{k=0}^{T-1} \alpha_{k}^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

- Let's write down how close we came to the optimum $x^{*}=\arg \min _{x \in \mathbb{R}^{n}} f(x)=\arg f^{*}$ on the last iteration:
- For a subgradient: $\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq$ $f\left(x_{k}\right)-f\left(x^{*}\right)=f\left(x_{k}\right)-f^{*}$.

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq R^{2}+G^{2} \sum_{k=0}^{T-1} \alpha_{k}^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

- Let's write down how close we came to the optimum $x^{*}=\arg \min _{x \in \mathbb{R}^{n}} f(x)=\arg f^{*}$ on the last iteration:
- For a subgradient: $\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq$ $f\left(x_{k}\right)-f\left(x^{*}\right)=f\left(x_{k}\right)-f^{*}$.
- We additionaly assume, that $\left\|g_{k}\right\|^{2} \leq G^{2}$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq R^{2}+G^{2} \sum_{k=0}^{T-1} \alpha_{k}^{2}
\end{aligned}
$$

Convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}
\end{aligned}
$$

Let us sum the obtained equality for $k=0, \ldots, T-1$:

$$
\begin{aligned}
\sum_{k=0}^{T-1} 2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle & =\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq\left\|x_{0}-x^{*}\right\|^{2}+\sum_{k=0}^{T-1} \alpha_{k}^{2}\left\|g_{k}^{2}\right\| \\
& \leq R^{2}+G^{2} \sum_{k=0}^{T-1} \alpha_{k}^{2}
\end{aligned}
$$

- Let's write down how close we came to the optimum $x^{*}=\arg \min _{x \in \mathbb{R}^{n}} f(x)=\arg f^{*}$ on the last iteration:
- For a subgradient: $\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq$ $f\left(x_{k}\right)-f\left(x^{*}\right)=f\left(x_{k}\right)-f^{*}$.
- We additionaly assume, that $\left\|g_{k}\right\|^{2} \leq G^{2}$
- We use the notation $R=\left\|x_{0}-x^{*}\right\|_{2}$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}$.

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}$

$$
f(\bar{x})-f^{*}=f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right)
$$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
$$

$$
\begin{aligned}
f(\bar{x})-f^{*} & =f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right) \\
& \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right)
\end{aligned}
$$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}$

$$
\begin{aligned}
f(\bar{x})-f^{*} & =f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right) \\
& \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right) \\
& \leq G R \frac{1}{\sqrt{T}}
\end{aligned}
$$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}$

$$
\begin{aligned}
f(\bar{x})-f^{*} & =f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right) \\
& \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right) \\
& \leq G R \frac{1}{\sqrt{T}}
\end{aligned}
$$

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
$$

$$
\begin{aligned}
f(\bar{x})-f^{*} & =f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right) \\
& \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right) \\
& \leq G R \frac{1}{\sqrt{T}}
\end{aligned}
$$

Important notes:

- Obtaining bounds not for x_{T} but for the arithmetic mean over iterations \bar{x} is a typical trick in obtaining estimates for methods where there is convexity but no monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average

Convergence bound

Assuming $\alpha_{k}=\alpha$ (constant stepsize), we have:

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq \frac{R^{2}}{2 \alpha}+\frac{\alpha}{2} G^{2} T
$$

Minimizing the right-hand side by α gives $\alpha^{*}=\frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
$$

$$
\begin{aligned}
f(\bar{x})-f^{*} & =f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_{k}\right)-f^{*} \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left(f\left(x_{k}\right)-f^{*}\right)\right) \\
& \leq \frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right) \\
& \leq G R \frac{1}{\sqrt{T}}
\end{aligned}
$$

Important notes:

- Obtaining bounds not for x_{T} but for the arithmetic mean over iterations \bar{x} is a typical trick in obtaining estimates for methods where there is convexity but no monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average
- To choose the optimal step, we need to know (assume) the number of iterations in advance. Possible solution: initialize T with a small value, after reaching this number of iterations double T and restart the algorithm. A more intelligent way: adaptive selection of stepsize.

Steepest subgradient descent convergence bound

$$
\left\|x_{k+1}-x^{*}\right\|^{2}=\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}=
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{=}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{=} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) }
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{=} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) } \\
& \circ\left\|x_{k}-x^{*}\right\|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{=} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) } \\
& \stackrel{\circ}{=} x_{k}-x^{*} \|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}} \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & =\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right)\left\|g_{k}\right\|^{2} \leq\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{=} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) } \\
& \doteq\left\|x_{k}-x^{*}\right\|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}} \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & =\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right)\left\|g_{k}\right\|^{2} \leq\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \\
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & \leq \sum_{k=0}^{T-1}\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \leq\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}\right) G^{2}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \xlongequal{(1)} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) } \\
& \doteq\left\|x_{k}-x^{*}\right\|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}} \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & =\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right)\left\|g_{k}\right\|^{2} \leq\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \\
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & \leq \sum_{k=0}^{T-1}\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \leq\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}\right) G^{2} \\
\frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right)^{2} & \leq \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} \leq R^{2} G^{2} \quad \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \xlongequal{(1)} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}} \text { (from minimizing right hand side over stepsize) } \\
& \doteq\left\|x_{k}-x^{*}\right\|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}} \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & =\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right)\left\|g_{k}\right\|^{2} \leq\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \\
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & \leq \sum_{k=0}^{T-1}\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \leq\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}\right) G^{2} \\
\frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right)^{2} & \leq \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} \leq R^{2} G^{2} \quad \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
\end{aligned}
$$

Steepest subgradient descent convergence bound

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|^{2}= \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \stackrel{ }{\circ} \\
\alpha_{k} & =\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle}{\left\|g_{k}\right\|^{2}}(\text { from minimizing right hand side over stepsize }) \\
& \stackrel{\circ}{=} x_{k}-x^{*} \|^{2}-\frac{\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2}}{\left\|g_{k}\right\|^{2}} \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & =\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right)\left\|g_{k}\right\|^{2} \leq\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \\
\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} & \leq \sum_{k=0}^{T-1}\left(\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}\right) G^{2} \leq\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{T}-x^{*}\right\|^{2}\right) G^{2} \\
\frac{1}{T}\left(\sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right)^{2} & \leq \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle^{2} \leq R^{2} G^{2} \quad \sum_{k=0}^{T-1}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \leq G R \sqrt{T}
\end{aligned}
$$

Which leads to exactly the same bound of $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ on the primal gap. In fact, for this class of functions, you can't get a better result than $\frac{1}{\sqrt{T}}$.

Convergence results

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$
f(\bar{x})-f^{*} \leq \frac{G\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{K}} \quad \bar{x}=\frac{1}{K} \sum_{k=0}^{K-1} x_{i}
$$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right.$ in the strongly convex case $)$.

Convergence results

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$
f(\bar{x})-f^{*} \leq \frac{G\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{K}} \quad \bar{x}=\frac{1}{K} \sum_{k=0}^{K-1} x_{i}
$$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right.$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).

Convergence results

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$
f(\bar{x})-f^{*} \leq \frac{G\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{K}} \quad \bar{x}=\frac{1}{K} \sum_{k=0}^{K-1} x_{i}
$$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right.$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.

Convergence results

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$
f(\bar{x})-f^{*} \leq \frac{G\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{K}} \quad \bar{x}=\frac{1}{K} \sum_{k=0}^{K-1} x_{i}
$$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right.$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.
- Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the problem structure, we can improve convergence (proximal gradient method).

Convergence results

Theorem

Let f be a convex G-Lipschitz function and $f_{k}^{\text {best }}=\min _{i=1, \ldots, k} f\left(x^{i}\right)$. For a fixed step size α, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f_{k}^{\text {best }} \leq f^{*}+\frac{G^{2} \alpha}{2}
$$

Theorem

Let f be a convex G-Lipschitz function and $f_{k}^{\text {best }}=\min _{i=1, \ldots, k} f\left(x^{i}\right)$. For a diminishing step size α_{k} (square summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f_{k}^{\text {best }} \leq f^{*}
$$

Linear Least Squares with l_{1}-regularization

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

Algorithm will be written as:

$$
x_{k+1}=x_{k}-\alpha_{k}\left(A^{\top}\left(A x_{k}-b\right)+\lambda \operatorname{sign}\left(x_{k}\right)\right)
$$

where signum function is taken element-wise.
LLS with I_{1} regularization. 2 runs. $\lambda=1$

Regularized logistic regression

Given $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times\{0,1\}$ for $i=1, \ldots, n$, the logistic regression function is defined as:

$$
f(\theta)=\sum_{i=1}^{n}\left(-y_{i} x_{i}^{T} \theta+\log \left(1+\exp \left(x_{i}^{T} \theta\right)\right)\right)
$$

This is a smooth and convex function with its gradient given by:

$$
\nabla f(\theta)=\sum_{i=1}^{n}\left(y_{i}-s_{i}(\theta)\right) x_{i}
$$

where $s_{i}(\theta)=\frac{\exp \left(x_{i}^{T} \theta\right)}{1+\exp \left(x_{i}^{T} \theta\right)}$, for $i=1, \ldots, n$. Consider the regularized problem:

$$
f(\theta)+\lambda r(\theta) \rightarrow \min _{\theta}
$$

where $r(\theta)=\|\theta\|_{2}^{2}$ for the ridge penalty, or $r(\theta)=\|\theta\|_{1}$ for the lasso penalty.

Support Vector Machines

Let $D=\left\{\left(x_{i}, y_{i}\right) \mid x_{i} \in \mathbb{R}^{n}, y_{i} \in\{ \pm 1\}\right\}$
We need to find $\theta \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that

$$
\min _{\theta \in \mathbb{R}^{n}, b \in \mathbb{R}} \frac{1}{2}\|\theta\|_{2}^{2}+C \sum_{i=1}^{m} \max \left[0,1-y_{i}\left(\theta^{\top} x_{i}+b\right)\right]
$$

