

Subgradient Method. Specifics of non-smooth problems

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

ℓ_1 -regularized linear least squares

 l_1 induces sparsity

@fminxyz

Norms are not smooth

 $\min_{x \in \mathbb{R}^n} f(x),$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

Figure 1: Norm cones for different p - norms are non-smooth

Wolfe's example

Wolfe's example

Figure 2: Wolfe's example. Colab

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

 $f(x) > f(x_0) + \langle q, x - x_0 \rangle$

graph of the function is the *global* estimate

• If f(x) is differentiable, then $g = \nabla f(x_0)$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

-) for some vector g, i.e., the tangent to the graph of the function is the *global* estimate from below for the function.
 - If f(x) is differentiable, then $g = \nabla f(x_0)$
 - Not all continuous convex functions are differentiable.

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

-) for some vector g, i.e., the tangent to the graph of the function is the *global* estimate from below for the function.
 - If f(x) is differentiable, then $g = \nabla f(x_0)$
 - Not all continuous convex functions are differentiable.

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

-) for some vector g, i.e., the tangent to the graph of the function is the *global* estimate from below for the function.
 - If f(x) is differentiable, then $g = \nabla f(x_0)$
 - Not all continuous convex functions are differentiable.

We wouldn't want to lose such a nice property.

A vector g is called the subgradient of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

A vector g is called the **subgradient** of a function $f(x) : S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

A vector g is called the **subgradient** of a function $f(x) : S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

Figure 4: Subdifferential is a set of all possible subgradients

 $f \rightarrow \min_{x,y,z}$ Subgradient calculus

♥ **೧ 0** 6

Find $\partial f(x)$, if f(x) = |x|

Subgradient and subdifferential Find $\partial f(x)$, if f(x) = |x|

 $f \rightarrow \min_{x,y,z}$ Subgradient calculus

Subdifferential properties • If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$

- If $x_0 \in \mathbf{ri}S$, then $\dot{\partial}f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}S$, then $\dot{\partial}f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}S$, then $\dot{\partial}f(\dot{x_0})$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

 $f \to \min_{x,y,z}$

Subgradient calculus

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

 $f \to \min_{x,y,z}$

Subgradient calculus

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

 $f \rightarrow \min_{x,y,z}$ Si

Subgradient calculus

which implies:

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

2. From this, $\langle s - \nabla f(x_0), v \rangle \ge 0$. Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to $s = \nabla f(x_0)$.

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

 $f \rightarrow \min_{x,y,z}$ Subgradie

Subgradient calculus

which implies:

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta.$ Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

2. From this, $\langle s-\nabla f(x_0),v\rangle\geq 0.$ Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to $s = \nabla f(x_0)$.

3. Furthermore, if the function f is convex, then according to the differential condition of convexity $f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ for all $x \in S$. But by definition, this means $\nabla f(x_0) \in \partial f(x_0)$.

♥**೧**♥ 8

1 Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let
$$f_i(x)$$
 be convex functions on convex sets S_i , $i = \overline{1, n}$. Then if $\bigcap_{i=1}^n \operatorname{ri} S_i \neq \emptyset$ then the function $f(x) = \sum_{i=1}^n a_i f_i(x)$, $a_i > 0$ has a subdifferential $\partial_S f(x)$ on the set $S = \bigcap_{i=1}^n S_i$ and
 $\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets S_i , $i = \overline{1, n}$. Then if $\bigcap_{i=1}^n \operatorname{ri} S_i \neq \emptyset$ then the function $f(x) = \sum_{i=1}^n a_i f_i(x)$, $a_i > 0$ has a subdifferential $\partial_S f(x)$ on the set $S = \bigcap_{i=1}^n S_i$ and $\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$ Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let $f_i(x)$ be convex functions on the open convex set $S \subseteq \mathbb{R}^n$, $x_0 \in S$, and the pointwise maximum is defined as $f(x) = \max f_i(x)$. Then:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ \bigcup_{i \in I(x_0)} \partial_S f_i(x_0) \right\}, \quad I(x) = \{i \in [x_0] : i \in I(x_0)\}$$

• $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$

• $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$ • $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i - convex functions

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (\widetilde{f(Ax+b)})(x) = A^T \partial f(Ax+b)$, f convex function

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$ • $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i - convex functions
- $\partial (\widetilde{f(Ax+b)})(x) = A^T \partial f(Ax+b)$, f convex function
- $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$.

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

 $f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

The idea is very simple: let's replace the gradient $\nabla f(x_k)$ in the gradient descent algorithm with a subgradient g_k at point x_k :

$$x_{k+1} = x_k - \alpha_k g_k,$$

where g_k is an arbitrary subgradient of the function f(x) at the point x_k , $g_k \in \partial f(x_k)$

$$\|x_{k+1} - x^*\|^2 = \|x_k - x^* - \alpha_k g_k\|^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ 2\alpha_k \langle g_k, x_k - x^* \rangle &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2 \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ 2\alpha_k \langle g_k, x_k - x^* \rangle &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2 \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ 2\alpha_k \langle g_k, x_k - x^* \rangle &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2 \end{aligned}$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

Let us sum the obtained equality for $k = 0, \ldots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

• Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ 2\alpha_k \langle g_k, x_k - x^* \rangle &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2 \end{aligned}$$

Let us sum the obtained equality for $k = 0, \ldots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

 $f \rightarrow \min_{x,y,z}$ Subgradient Method

• Let's write down how close we came to the optimum $x^* = \arg\min_{x\in\mathbb{R}^n}f(x) = \arg f^*$ on the last iteration:

• For a subgradient:
$$\langle g_k, x_k - x^* \rangle \le f(x_k) - f(x^*) = f(x_k) - f^*$$
.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

Let us sum the obtained equality for $k = 0, \ldots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

• Let's write down how close we came to the optimum $x^* = \arg\min_{x\in\mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

• For a subgradient:
$$\langle g_k, x_k - x^* \rangle \leq f(x_k) - f(x^*) = f(x_k) - f^*$$
.

 $\|$

• We additionally assume, that $\|g_k\|^2 \leq G^2$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$
 $2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$

Let us sum the obtained equality for $k = 0, \ldots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$
$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

• Let's write down how close we came to the optimum $x^* = \arg\min_{x\in\mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

• For a subgradient:
$$\langle g_k, x_k - x^* \rangle \leq f(x_k) - f(x^*) = f(x_k) - f^*$$
.

• We additionaly assume, that
$$||g_k||^2 \leq G^2$$

• We use the notation
$$R = ||x_0 - x^*||_2$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR\frac{1}{\sqrt{T}}$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR\frac{1}{\sqrt{T}}$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR\frac{1}{\sqrt{T}}$$

Important notes:

Obtaining bounds not for x_T but for the arithmetic mean over iterations x̄ is a typical trick in obtaining estimates for methods where there is convexity but no monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR\frac{1}{\sqrt{T}}$$

Important notes:

- Obtaining bounds not for x_T but for the arithmetic mean over iterations x̄ is a typical trick in obtaining estimates for methods where there is convexity but no monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average
- To choose the optimal step, we need to know (assume) the number of iterations in advance. Possible solution: initialize T with a small value, after reaching this number of iterations double T and restart the algorithm. A more intelligent way: adaptive selection of stepsize.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

= $||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=}$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ &\alpha_k = \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ \langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \le \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ &\alpha_k = \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 = \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \le \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \le \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \end{aligned}$$

 $||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k a_k||^2 =$ $= ||x_{k} - x^{*}||^{2} + \alpha_{k}^{2} ||a_{k}||^{2} - 2\alpha_{k} \langle a_{k}, x_{k} - x^{*} \rangle \stackrel{\circ}{=}$ $\alpha_k = \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2}$ (from minimizing right hand side over stepsize) $\stackrel{\circ}{=} ||x_k - x^*||^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{||g_k||^2}$ $\langle g_k, x_k - x^* \rangle^2 = (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2) \|g_k\|^2 \le (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2) G^2$ $\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le \sum_{k=1}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \le \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2 \right) G^2$ $\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \right)^2 \le \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}$

 $||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k a_k||^2 =$ $= ||x_{k} - x^{*}||^{2} + \alpha_{k}^{2} ||a_{k}||^{2} - 2\alpha_{k} \langle a_{k}, x_{k} - x^{*} \rangle \stackrel{\circ}{=}$ $\alpha_k = \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2}$ (from minimizing right hand side over stepsize) $\stackrel{\circ}{=} ||x_k - x^*||^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{||g_k||^2}$ $\langle g_k, x_k - x^* \rangle^2 = (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2) \|g_k\|^2 \le (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2) G^2$ $\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le \sum_{k=1}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \le \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2 \right) G^2$ $\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \right)^2 \le \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ &\alpha_k = \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 = \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \le \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \le \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \le \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \le R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T} \end{aligned}$$

Which leads to exactly the same bound of $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ on the primal gap. In fact, for this class of functions, you can't get a better result than $\frac{1}{\sqrt{T}}$.

i Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G \|x_0 - x^*\|_2}{\sqrt{K}} \qquad \overline{x} = \frac{1}{K} \sum_{k=0} x_i$$

• $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).

i Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{||x_0 - x^*||_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G \|x_0 - x^*\|_2}{\sqrt{K}} \qquad \overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x^k$$

• $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).

i Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G \|x_0 - x^*\|_2}{\sqrt{K}} \qquad \overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x^k$$

• $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).

- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.

i Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G \|x_0 - x^*\|_2}{\sqrt{K}} \qquad \overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x$$

• $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).

- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.
- Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the problem structure, we can improve convergence (proximal gradient method).

i Theorem

Let f be a convex G-Lipschitz function and $f_k^{\text{best}} = \min_{i=1,\dots,k} f(x^i)$. For a fixed step size α , subgradient method satisfies

$$\lim_{k \to \infty} f_k^{\text{best}} \le f^* + \frac{G^2 c}{2}$$

i Theorem

Let f be a convex G-Lipschitz function and $f_k^{\text{best}} = \min_{i=1,\dots,k} f(x^i)$. For a diminishing step size α_k (square summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method satisfies

$$\lim_{k \to \infty} f_k^{\text{best}} \le f$$

Linear Least Squares with l_1 -regularization

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

Algorithm will be written as:

$$x_{k+1} = x_k - \alpha_k \left(A^\top (Ax_k - b) + \lambda \mathsf{sign}(x_k) \right)$$

where signum function is taken element-wise.

LLS with l_1 regularization. 2 runs. $\lambda = 1$

Regularized logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ for $i = 1, \dots, n$, the logistic regression function is defined as:

$$f(\theta) = \sum_{i=1}^{n} \left(-y_i x_i^T \theta + \log(1 + \exp(x_i^T \theta)) \right)$$

This is a smooth and convex function with its gradient given by:

$$\nabla f(\theta) = \sum_{i=1}^{n} (y_i - s_i(\theta)) x_i$$

where
$$s_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}$$
, for $i = 1, \dots, n$. Consider the regularized problem:
$$f(\theta) + \lambda r(\theta) \to \min_{\theta}$$

where $r(\theta) = \|\theta\|_2^2$ for the ridge penalty, or $r(\theta) = \|\theta\|_1$ for the lasso penalty.

Support Vector Machines

Let $D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\}$

We need to find $\theta \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\min_{\theta \in \mathbb{R}^{n}, b \in \mathbb{R}} \frac{1}{2} \|\theta\|_{2}^{2} + C \sum_{i=1}^{m} \max[0, 1 - y_{i}(\theta^{\top} x_{i} + b)]$$

