
Conjugate gradients method

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rn

f(x) = min
x∈Rn

1
2x⊤Ax − b⊤x + c, where A ∈ Sn

++. (1)

Optimality conditions

Ax∗ = b

4 2 0 2 4

4

2

0

2

4

Steepest Descent

4 2 0 2 4

4

2

0

2

4

Conjugate Gradient

Quadratic optimization problem v § } 2

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk)T ∇f(xk+1) = 0

\ Optimal value for quadratics

∇f(xk)⊤A(xk − α∇f(xk)) − ∇f(xk)⊤b = 0 αk = ∇f(xk)T ∇f(xk)
∇f(xk)T A∇f(xk)

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 1: Steepest
Descent

Open In Colab ♣

Quadratic optimization problem v § } 3

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk)T ∇f(xk+1) = 0

\ Optimal value for quadratics

∇f(xk)⊤A(xk − α∇f(xk)) − ∇f(xk)⊤b = 0 αk = ∇f(xk)T ∇f(xk)
∇f(xk)T A∇f(xk)

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 1: Steepest
Descent

Open In Colab ♣

Quadratic optimization problem v § } 3

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk)T ∇f(xk+1) = 0

\ Optimal value for quadratics

∇f(xk)⊤A(xk − α∇f(xk)) − ∇f(xk)⊤b = 0 αk = ∇f(xk)T ∇f(xk)
∇f(xk)T A∇f(xk)

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 1: Steepest
Descent

Open In Colab ♣
Quadratic optimization problem v § } 3

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

4 2 0 2 4
x

4

2

0

2

4

x
v1 and v2 are orthogonal

vT
1v2 = 0.00

vT
1Av2 = 1.19

4 2 0 2 4
x

4

2

0

2

4

x

v and v are A-orthogonal
v Tv = 0.80

v TAv = 0.00

Figure 2

Orthogonality v § } 4

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CG.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂

= 1
2 x̂T QΛQT x̂ = 1

2 x̂T QΛ
1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂

= 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂

= 1
2xT Ix if x = Λ

1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix

if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂

and x̂ = QΛ− 1
2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in other coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sn

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂ = 1

2 x̂T QΛQT x̂ = 1
2 x̂T QΛ

1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rn and y ∈ Rn are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.

Orthogonality v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process
Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

Figure 3: Illustration of Gram-Schmidt orthogonalization process

Orthogonality v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process
Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

Figure 4: Illustration of Gram-Schmidt orthogonalization process

Orthogonality v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process
Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

Figure 5: Illustration of Gram-Schmidt orthogonalization process

Orthogonality v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process
Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

Figure 6: Illustration of Gram-Schmidt orthogonalization process

Orthogonality v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process
Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

Figure 7: Illustration of Gram-Schmidt orthogonalization process

Orthogonality v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.

Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)

d2 = u2 − πd0 (u2) − πd1 (u2)
...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram–Schmidt process

Input: n linearly independent vectors u0, . . . , un−1.
Output: n linearly independent vectors, which are pairwise orthogonal d0, . . . , dn−1.

d0 = u0

d1 = u1 − πd0 (u1)
d2 = u2 − πd0 (u2) − πd1 (u2)

...

dk = uk −
k−1∑
i=0

πdi (uk)

dk = uk +
k−1∑
i=0

βikdi βik = −⟨di, uk⟩
⟨di, di⟩

(2)

Orthogonality v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

General idea

• In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A ̸= I using the concept of A-orthogonality.

• Suppose, we have a set of n linearly independent A-orthogonal directions d0, . . . , dn−1 (which will be computed
with Gram-Schmidt process).

• We would like to build a method, that goes from x0 to the x∗ for the quadratic problem with stepsizes αi,
which is, in fact, just the decomposition of x∗ − x0 to some basis:

x∗ = x0 +
n−1∑
i=0

αidi x∗ − x0 =
n−1∑
i=0

αidi

• We will prove, that αi and di could be selected in a very efficient way (Conjugate Gradient method).

Conjugate Directions (CD) method v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

General idea

• In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A ̸= I using the concept of A-orthogonality.

• Suppose, we have a set of n linearly independent A-orthogonal directions d0, . . . , dn−1 (which will be computed
with Gram-Schmidt process).

• We would like to build a method, that goes from x0 to the x∗ for the quadratic problem with stepsizes αi,
which is, in fact, just the decomposition of x∗ − x0 to some basis:

x∗ = x0 +
n−1∑
i=0

αidi x∗ − x0 =
n−1∑
i=0

αidi

• We will prove, that αi and di could be selected in a very efficient way (Conjugate Gradient method).

Conjugate Directions (CD) method v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

General idea

• In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A ̸= I using the concept of A-orthogonality.

• Suppose, we have a set of n linearly independent A-orthogonal directions d0, . . . , dn−1 (which will be computed
with Gram-Schmidt process).

• We would like to build a method, that goes from x0 to the x∗ for the quadratic problem with stepsizes αi,
which is, in fact, just the decomposition of x∗ − x0 to some basis:

x∗ = x0 +
n−1∑
i=0

αidi x∗ − x0 =
n−1∑
i=0

αidi

• We will prove, that αi and di could be selected in a very efficient way (Conjugate Gradient method).

Conjugate Directions (CD) method v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

General idea

• In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A ̸= I using the concept of A-orthogonality.

• Suppose, we have a set of n linearly independent A-orthogonal directions d0, . . . , dn−1 (which will be computed
with Gram-Schmidt process).

• We would like to build a method, that goes from x0 to the x∗ for the quadratic problem with stepsizes αi,
which is, in fact, just the decomposition of x∗ − x0 to some basis:

x∗ = x0 +
n−1∑
i=0

αidi x∗ − x0 =
n−1∑
i=0

αidi

• We will prove, that αi and di could be selected in a very efficient way (Conjugate Gradient method).

Conjugate Directions (CD) method v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).

2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the
formula

αk = −d⊤
k (Axk − b)

d⊤
k Adk

(3)

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. Update the direction: dk+1 = −∇f(xk+1) + βkdk in order to make dk+1 ⊥A dk, where βk is calculated by the
formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the

formula
αk = −d⊤

k (Axk − b)
d⊤

k Adk
(3)

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. Update the direction: dk+1 = −∇f(xk+1) + βkdk in order to make dk+1 ⊥A dk, where βk is calculated by the
formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the

formula
αk = −d⊤

k (Axk − b)
d⊤

k Adk
(3)

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. Update the direction: dk+1 = −∇f(xk+1) + βkdk in order to make dk+1 ⊥A dk, where βk is calculated by the
formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the

formula
αk = −d⊤

k (Axk − b)
d⊤

k Adk
(3)

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. Update the direction: dk+1 = −∇f(xk+1) + βkdk in order to make dk+1 ⊥A dk, where βk is calculated by the
formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the

formula
αk = −d⊤

k (Axk − b)
d⊤

k Adk
(3)

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. Update the direction: dk+1 = −∇f(xk+1) + βkdk in order to make dk+1 ⊥A dk, where βk is calculated by the
formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)

=
n∑

i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method

ñ Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d1, . . . , dn - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
n∑

i=1
αidi = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αidi

Multiply by dT
j A· = d⊤

j A

(
n∑

i=1

αidi

)
=

n∑
i=1

αid
⊤
j Adi

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one has to perform the same process

Conjugate Directions (CD) method v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence

We will introduce the following notation:
• rk = b − Axk - residual,

• ek = xk − x∗ - error.
• Since Ax∗ = b, we have rk = b − Axk = Ax∗ − Axk = −A(xk − x∗)

rk = −Aek. (4)

• Note also, that since xk+1 = x0 +
k∑

i=1
αidi, we have

ek+1 = e0 +
k∑

i=1

αidi. (5)

Conjugate Directions (CD) method v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence

We will introduce the following notation:
• rk = b − Axk - residual,
• ek = xk − x∗ - error.

• Since Ax∗ = b, we have rk = b − Axk = Ax∗ − Axk = −A(xk − x∗)

rk = −Aek. (4)

• Note also, that since xk+1 = x0 +
k∑

i=1
αidi, we have

ek+1 = e0 +
k∑

i=1

αidi. (5)

Conjugate Directions (CD) method v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence

We will introduce the following notation:
• rk = b − Axk - residual,
• ek = xk − x∗ - error.
• Since Ax∗ = b, we have rk = b − Axk = Ax∗ − Axk = −A(xk − x∗)

rk = −Aek. (4)

• Note also, that since xk+1 = x0 +
k∑

i=1
αidi, we have

ek+1 = e0 +
k∑

i=1

αidi. (5)

Conjugate Directions (CD) method v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence

We will introduce the following notation:
• rk = b − Axk - residual,
• ek = xk − x∗ - error.
• Since Ax∗ = b, we have rk = b − Axk = Ax∗ − Axk = −A(xk − x∗)

rk = −Aek. (4)

• Note also, that since xk+1 = x0 +
k∑

i=1
αidi, we have

ek+1 = e0 +
k∑

i=1

αidi. (5)

Conjugate Directions (CD) method v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi

= δkdT
k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)

= dT
k Aek = δkdT

k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek

= δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Proof of convergence
ñ Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

xk+1 = x0 +
k∑

i=0

αidi

with αi = ⟨di,ri⟩
⟨di,Adi⟩ taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that δi = −αi:

e0 = x0 − x∗ =
n−1∑
i=0

δidi

2. We multiply both hand sides from the left by dT
k A:

dT
k Ae0 =

n−1∑
i=0

δid
T
k Adi = δkdT

k Adk

dT
k A

(
e0 +

k−1∑
i=0

αidi

)
= dT

k Aek = δkdT
k Adk (A − orthogonality)

δk = dT
k Aek

dT
k Adk

= − dT
k rk

dT
k Adk

⇔ δk = −αk

Conjugate Directions (CD) method v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 3. Error decomposition

ei =
n−1∑
j=i

−αjdj (6)

Proof

By definition

ei = e0 +
i−1∑
j=0

αjdj = x0 − x∗ +
i−1∑
j=0

αjdj = −
n−1∑
j=0

αjdj +
i−1∑
j=0

αjdj =
n−1∑
j=i

−αjdj

Conjugate Directions (CD) method v § } 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 3. Error decomposition

ei =
n−1∑
j=i

−αjdj (6)

Proof

By definition

ei = e0 +
i−1∑
j=0

αjdj

= x0 − x∗ +
i−1∑
j=0

αjdj = −
n−1∑
j=0

αjdj +
i−1∑
j=0

αjdj =
n−1∑
j=i

−αjdj

Conjugate Directions (CD) method v § } 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 3. Error decomposition

ei =
n−1∑
j=i

−αjdj (6)

Proof

By definition

ei = e0 +
i−1∑
j=0

αjdj = x0 − x∗ +
i−1∑
j=0

αjdj

= −
n−1∑
j=0

αjdj +
i−1∑
j=0

αjdj =
n−1∑
j=i

−αjdj

Conjugate Directions (CD) method v § } 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 3. Error decomposition

ei =
n−1∑
j=i

−αjdj (6)

Proof

By definition

ei = e0 +
i−1∑
j=0

αjdj = x0 − x∗ +
i−1∑
j=0

αjdj = −
n−1∑
j=0

αjdj +
i−1∑
j=0

αjdj

=
n−1∑
j=i

−αjdj

Conjugate Directions (CD) method v § } 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 3. Error decomposition

ei =
n−1∑
j=i

−αjdj (6)

Proof

By definition

ei = e0 +
i−1∑
j=0

αjdj = x0 − x∗ +
i−1∑
j=0

αjdj = −
n−1∑
j=0

αjdj +
i−1∑
j=0

αjdj =
n−1∑
j=i

−αjdj

Conjugate Directions (CD) method v § } 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration rk, then for any i < k:

dT
i rk = 0 (7)

Proof
Let’s write down (6) for some fixed index k:

ek =
n−1∑
j=k

−αjdj

Multiply both sides by −dT
i A·

−dT
i Aek =

n−1∑
j=k

αjdT
i Adj = 0

Thus, dT
i rk = 0 and residual rk is orthogonal to all previous

directions di for the CD method.

Conjugate Directions (CD) method v § } 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration rk, then for any i < k:

dT
i rk = 0 (7)

Proof
Let’s write down (6) for some fixed index k:

ek =
n−1∑
j=k

−αjdj

Multiply both sides by −dT
i A·

−dT
i Aek =

n−1∑
j=k

αjdT
i Adj = 0

Thus, dT
i rk = 0 and residual rk is orthogonal to all previous

directions di for the CD method.

Conjugate Directions (CD) method v § } 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration rk, then for any i < k:

dT
i rk = 0 (7)

Proof
Let’s write down (6) for some fixed index k:

ek =
n−1∑
j=k

−αjdj

Multiply both sides by −dT
i A·

−dT
i Aek =

n−1∑
j=k

αjdT
i Adj = 0

Thus, dT
i rk = 0 and residual rk is orthogonal to all previous

directions di for the CD method.

Conjugate Directions (CD) method v § } 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

ñ Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration rk, then for any i < k:

dT
i rk = 0 (7)

Proof
Let’s write down (6) for some fixed index k:

ek =
n−1∑
j=k

−αjdj

Multiply both sides by −dT
i A·

−dT
i Aek =

n−1∑
j=k

αjdT
i Adj = 0

Thus, dT
i rk = 0 and residual rk is orthogonal to all previous

directions di for the CD method.

Conjugate Directions (CD) method v § } 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.

• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them
from a set of starting vectors.

• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.
• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally

expensive and requires a quadratic number of vector addition and scalar product operations O
(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.
• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.

• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.
• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally

expensive and requires a quadratic number of vector addition and scalar product operations O
(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.
• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.
• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.

• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally
expensive and requires a quadratic number of vector addition and scalar product operations O

(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.
• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.
• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.
• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally

expensive and requires a quadratic number of vector addition and scalar product operations O
(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.
• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.
• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.
• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally

expensive and requires a quadratic number of vector addition and scalar product operations O
(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of the Conjugate Gradients (CG) method

• It is literally the Conjugate Direction method, where we have a special (effective) choice of d0, . . . , dn−1.
• In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.
• The residuals on each iteration r0, . . . , rn−1 are used as starting vectors for Gram-Schmidt process.
• The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally

expensive and requires a quadratic number of vector addition and scalar product operations O
(
n2), while in

the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

\

CG = CD + r0, . . . , rn−1 as starting vectors for Gram–Schmidt + A-orthogonality.

Conjugate Gradients (CG) method v § } 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG

Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG

Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG

Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG

Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG

Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence
ñ Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rT
i rk = 0 ∀i ̸= k (8)

Proof
Let’s write down Gram-Schmidt process (2)
with ⟨·, ·⟩ replaced with ⟨·, ·⟩A = xT Ay

di = ui +
k−1∑
j=0

βjidj βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
(9)

Then, we use residuals as starting vectors for
the process and ui = ri.

di = ri +
k−1∑
j=0

βjidj βji = − ⟨dj , ri⟩A

⟨dj , dj⟩A
(10)

Multiply both sides of (9) by rT
k · for some index k:

rT
k di = rT

k ui +
k−1∑
j=0

βjir
T
k dj

If j < i < k, we have the lemma 4 with dT
i rk = 0 and dT

j rk = 0. We
have:

rT
k ui = 0 for CD rT

k ri = 0 for CG
Conjugate gradients (CG) method v § } 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj

= rT
k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj = rT

k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj = rT

k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj = rT

k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj = rT

k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Lemms for convergence

Moreover, if k = i:

rT
k dk = rT

k uk +
k−1∑
j=0

βjkrT
k dj = rT

k uk + 0,

and we have for any k (due to arbitrary choice of i):

rT
k dk = rT

k uk. (11)

ñ Lemma 6. Residual recalculation

rk+1 = rk − αkAdk (12)

rk+1 = −Aek+1 = −A (ek + αkdk) = −Aek − αkAdk = rk − αkAdk

Finally, all these above lemmas are enough to prove, that βji = 0 for all i, j, except the neighboring ones.

Conjugate gradients (CG) method v § } 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A

= −
dT

j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):

⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):

⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):

⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):

⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):

⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩

= ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩

= ⟨ri, rj⟩ − αj⟨ri, Adj⟩
αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩

= ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩

3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj

=
dT

j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj

= ⟨ri, ri⟩
⟨rj , rj⟩ = ⟨ri, ri⟩

⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩

= ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

βji = − ⟨dj , ui⟩A

⟨dj , dj⟩A
= −

dT
j Aui

dT
j Adj

= −
dT

j Ari

dT
j Adj

= − rT
i Adj

dT
j Adj

.

Consider the scalar product ⟨ri, rj+1⟩ using (12):
⟨ri, rj+1⟩ = ⟨ri, rj − αjAdj⟩ = ⟨ri, rj⟩ − αj⟨ri, Adj⟩

αj⟨ri, Adj⟩ = ⟨ri, rj⟩ − ⟨ri, rj+1⟩

1. If i = j: αi⟨ri, Adi⟩ = ⟨ri, ri⟩ − ⟨ri, ri+1⟩ = ⟨ri, ri⟩. This case is not of interest due to the GS process.
2. Neighboring case i = j + 1: αj⟨ri, Adj⟩ = ⟨ri, ri−1⟩ − ⟨ri, ri⟩ = −⟨ri, ri⟩
3. For any other case: αj⟨ri, Adj⟩ = 0, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

βji = − rT
i Adj

dT
j Adj

= 1
αj

⟨ri, ri⟩
dT

j Adj
=

dT
j Adj

dT
j rj

⟨ri, ri⟩
dT

j Adj
= ⟨ri, ri⟩

⟨rj , rj⟩ = ⟨ri, ri⟩
⟨ri−1, ri−1⟩

And for the direction
dk+1 = rk+1 + βk,k+1dk, βk,k+1 = βk = ⟨rk+1, rk+1⟩

⟨rk, rk⟩ .

Conjugate gradients (CG) method v § } 18

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate gradients method
r0 := b − Ax0

if r0 is sufficiently small, then return x0 as the result
d0 := r0

k := 0
repeat

αk := rT
krk

dT
kAdk

xk+1 := xk + αkdk

rk+1 := rk − αkAdk

if rk+1 is sufficiently small, then exit loop

βk :=
rT

k+1rk+1

rT
krk

dk+1 := rk+1 + βkdk

k := k + 1
end repeat
return xk+1 as the result

Conjugate gradients (CG) method v § } 19

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in r
iterations.

Theorem 2. The following convergence bound holds

∥xk − x∗∥A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

∥x0 − x∗∥A,

where ∥x∥2
A = x⊤Ax and κ(A) = λ1(A)

λn(A) is the conditioning number of matrix A, λ1(A) ≥ ... ≥ λn(A) are the
eigenvalues of matrix A

Note: Compare the coefficient of the geometric progression with its analog in gradient descent.

Conjugate gradients (CG) method v § } 20

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

0

20

40

60

80

100

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 25 50 75 100
Iteration

10 12

10 9

10 6

10 3

100

103

|f(
x)

f* |

Function gap

0 25 50 75 100

10 10

10 7

10 4

10 1

102

f(x
)

2

Norm of Gradient

Convex quadratics. n=60, random matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

20

40

60

80

100

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 25 50 75 100
Iteration

10 12

10 9

10 6

10 3

100

103

|f(
x)

f* |

Function gap

0 25 50 75 100

10 38

10 30

10 22

10 14

10 6

102

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=60, random matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

0

200

400

600

800

1000

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 25 50 75 100
Iteration

10 11

10 8

10 5

10 2

101

104

|f(
x)

f* |

Function gap

0 25 50 75 100

10 18

10 13

10 8

10 3

102

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=60, random matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 23

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

0

200

400

600

800

1000

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 200 400
Iteration

10 11

10 8

10 5

10 2

101

104

|f(
x)

f* |

Function gap

0 200 400

10 137

10 112

10 87

10 62

10 37

10 12

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=60, clustered matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 24

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 200 400 600
Dimension

0

200

400

600

800

1000

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 200 400
Iteration

10 10

10 7

10 4

10 1

102

105

|f(
x)

f* |

Function gap

0 200 400

10 140

10 114

10 88

10 62

10 36

10 10

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=600, clustered matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 25

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

0

20

40

60

80

100

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 25 50 75 100
Iteration

10 12

10 9

10 6

10 3

100

103

|f(
x)

f* |

Function gap

0 25 50 75 100

10 29

10 23

10 17

10 11

10 5

101

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=60, uniform spectrum matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 26

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = 1
2xT Ax − bT x → min

x∈Rn

0 20 40 60
Dimension

10 16

10 13

10 10

10 7

10 4

10 1

Ei
ge

nv
al

ue
s o

f A

Eigenvalues

0 25 50 75 100
Iteration

102

|f(
x)

f* |

Function gap

0 25 50 75 100

10 4

10 2

100

f(x
)

2

Norm of Gradient

Strongly convex quadratics. n=60, Hilbert matrix.

Gradient Descent Steepest Descent Conjugate Gradients

Conjugate gradients (CG) method v § } 27

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Non-linear conjugate gradient method
In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve
the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

xk+1 − xk = cdk,

where c is some kind of constant. Then for the quadratic case, we have:

∇f(xk+1) − ∇f(xk) = (Axk+1 − b) − (Axk − b) = A(xk+1 − xk) = cAdk

Expressing from this equation the work Adk = 1
c

(∇f(xk+1) − ∇f(xk)), we get rid of the “knowledge” of the
function in step definition βk, then point 4 will be rewritten as:

βk = ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
d⊤

k (∇f(xk+1) − ∇f(xk))
.

This method is called the Polack-Ribier method.
Non-linear CG v § } 28

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 5

10 4

10 3

10 2

10 1

100

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =0

Gradient Descent Steepest Descent Conjugate Gradients PR Conjugate Gradients FR

Non-linear CG v § } 29

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 7

10 5

10 3

10 1

101

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =1

Gradient Descent Steepest Descent Conjugate Gradients PR Conjugate Gradients FR

Non-linear CG v § } 30

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 8

10 6

10 4

10 2

100

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =1

Gradient Descent
Steepest Descent

Conjugate Gradients PR
Conjugate Gradients PR. restart 20

Conjugate Gradients FR
Conjugate Gradients FR. restart 20

Non-linear CG v § } 31

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 7

10 5

10 3

10 1

101

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =1

Gradient Descent
Steepest Descent

Conjugate Gradients PR
Conjugate Gradients PR. restart 50

Conjugate Gradients FR
Conjugate Gradients FR. restart 50

Non-linear CG v § } 32

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

103

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 9

10 7

10 5

10 3

10 1

101

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =10

Gradient Descent Steepest Descent Conjugate Gradients PR Conjugate Gradients FR

Non-linear CG v § } 33

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Numerical results

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

103

f(x
)

0 25 50 75 100 125 150 175 200
Iteration

10 9

10 7

10 5

10 3

10 1

101

f(x
)

2

Regularized binary logistic regression. n=300. m=1000. =10

Gradient Descent
Steepest Descent

Conjugate Gradients PR
Conjugate Gradients PR. restart 20

Conjugate Gradients FR
Conjugate Gradients FR. restart 20

Non-linear CG v § } 34

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Quadratic optimization problem
	Orthogonality
	Conjugate Directions (CD) method
	Conjugate Gradients (CG) method
	Conjugate gradients (CG) method
	Non-linear CG

