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Strongly convex quadratics

Consider the following quadratic optimization problem: Optimality conditions
. I U SR n Az =10
min f(z) = min >z Ax —b z+c, where AeS},. (1)
Steepest Descent Conjugate Gradient

——————
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Exact line search aka steepest descent
ap = arg min f(xgy1) = arg min f(zr — aVf(xg))
acRt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(zk))
acRt
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Exact line search aka steepest descent

ap = arg min f(xgy1) = arg min f(zr — aVf(xg))
a€eRt a€eRt
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often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(zk))
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Optimality conditions:
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Exact line search aka steepest descent
a = arg min f(zry1) = arg min f(zr — aV f(zk))
a€Rt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(zk))
a€Rt

Optimality conditions:

Vf(@r) Vf(zre) =0

O Optimal value for quadratics

T
Vf(xk)TA(:ck —aVf(zg)) — Vf(xk)Tb =0 ag = VVJC{EC?;;AVVJZE;(K;Z) Eigure 1: Steepest
escent

Open In Colab &
0 O 3
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Conjugate directions. A-orthogonality.

vy and v, are orthogonal
viv,=0.00
VIAv,; =1.19

%

S
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V1 and V2 are A-orthogonal
1702= —0.80
V1TAV2 = —0.00
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 1
§$TILU 5 ATAL?}
Since A = QAQT:
%ATAQ%
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 1
§$TILU 5 ATAL?}
Since A = QAQT:
%@TA@ = %iTQAQsz
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 T 1AT -
—z I |
g% 1z 2 z
Since A = QAQT:
1.7, 1.7 T . 1.7 1.1 7.
3¢ Ax:Em QAQ &=t QAZA2Q &
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 1
§xTIac B 2 Az
Since A = QAQT:
%@TA@ - %iTQAQsz - %a%TQA%A%QT:% - %xTI:v
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 T 1AT -
—z' I 3" A
5% Iz 3 z
Since A = QAQT:
1.r,. 1.1 r._ Lo 1 1 7. 17 . L7,
3¢ Ax:Em QAQ &=t QAZA2Q =5 Iz ife=A2Q &
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 T 1AT -
—z' I 3" A
5% Iz 3 z
Since A = QAQT:
1.r,. 1.1 r._ Lo 1 1 7. 17 . L7, N -1
3¢ Ax:Em QAQ &=t QAZA2Q =5 Iz ife=A2Q & and 2 =QA 2z
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 T 1AT -
—z' I 3" A
5% Iz 3 z
Since A = QAQT:
1.r,. 1.1 r._ Lo 1 1 7. 17 . L7, N -1
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIx looks just like on the left
part of Figure 2, while in other coordinates it looks like f() = 32" A%, where A € ST .

1 1
§xTIac §ATA4%

Since A = QAQT:
1

~iT Az = %ﬁcTQAQT

> dTQA2A2Q T2 = ~aTIe  ifz=A2Q % and & = QA 2z

2>
Il

) A-orthogonal vectors

Vectors € R™ and y € R™ are called A-orthogonal (or A-conjugate) if
T Ay=0 & zlay

When A = I, A-orthogonality becomes orthogonality.
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Gram—Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn—1.

AU
Uo

Figure 3: lllustration of Gram-Schmidt orthogonalization process
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Gram—Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn—1.

AU
Uo

Figure 4: lllustration of Gram-Schmidt orthogonalization process
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Gram—Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn—1.

Figure 5: lllustration of Gram-Schmidt orthogonalization process
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Gram—Schmidt process
Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn—1.

Uy — 74, (ul)

u
Up 1

do

Figure 6: lllustration of Gram-Schmidt orthogonalization process

‘f -+ ].".}2 Orthogonality


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Gram—Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn—1.

AU
Uo

Figure 7: lllustration of Gram-Schmidt orthogonalization process
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Gram-Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.
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Gram—Schmidt process

Input: n linearly independent vectors ug, ..., Un—1.
w Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn_1.
1
Ug
do = g
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Gram—Schmidt process

R f— min

Ui

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, . ..

do = Uo

dl = Ul — ﬂ'do(’ul)

7dn71-
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Gram—Schmidt process

d()

R f— min

Ui

/dl

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.
Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn_1.
do = g

dl = Ul — ﬂ'do(’ul)

da = uz — mq, (u2) — may (u2)
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Gram—Schmidt process

d()

R f— min

Ui

/dl

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.
Output: n linearly independent vectors, which are pairwise orthogonal do, ..., dn_1.
do = g

dl = Ul — ﬂ'do(’ul)

da = uz — mq, (u2) — may (u2)
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Gram—Schmidt process

R f— min

Ui

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, . ..

do = Uo
dl = Ul — ﬂ'do(’ul)

da = uz — mq, (u2) — may (u2)

k-1
dip = up — Zmi(uk)
i—0

7dn71-
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Gram—Schmidt process

R f— min

Ui

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, . ..

do = Uo
dl = Ul — ﬂ'do(’ul)

da = uz — mq, (u2) — may (u2)

k-1
dip = up — Zmi(uk)
i—0

7dn71-
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Gram—Schmidt process

d()

7Td(u) =

R /— min

Ui

(d, u2> d
ldll3

Orthogonality

Input: n linearly independent vectors ug, ..., Un—1.

Output: n linearly independent vectors, which are pairwise orthogonal do, . ..

do = Uo
dl = Ul — ﬂ'do(’ul)

da = uz — mq, (u2) — may (u2)

k-1
dip = up — Zmi (uk)
i—0

<dl7uk>
(di, di)

k-1
di = ug + Zﬂikdi Bik = —
i=0
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General idea

® In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A # I using the concept of A-orthogonality.
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https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

General idea

® In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same

procedure in the case A # I using the concept of A-orthogonality.
® Suppose, we have a set of n linearly independent A-orthogonal directions dpo, ..., dn—1 (which will be computed

with Gram-Schmidt process).
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General idea

® In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same

procedure in the case A # I using the concept of A-orthogonality.
® Suppose, we have a set of n linearly independent A-orthogonal directions dpo, ..., dn—1 (which will be computed

with Gram-Schmidt process).
® We would like to build a method, that goes from x( to the z* for the quadratic problem with stepsizes «;,

which is, in fact, just the decomposition of z* — xo to some basis:

n—1 n—1
* *
T =x0+ E o;d; T —Xog = E o;d;
i=0 1=0
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General idea

® In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly
independent directions will converge in n steps in exact arithmetic. We attempt to construct the same
procedure in the case A # I using the concept of A-orthogonality.

® Suppose, we have a set of n linearly independent A-orthogonal directions dpo, ..., dn—1 (which will be computed

with Gram-Schmidt process).
® We would like to build a method, that goes from x( to the z* for the quadratic problem with stepsizes «;,
which is, in fact, just the decomposition of z* — xo to some basis:

n—1 n—1
* *
T =x0+ E o;d; T —Xog = E o;d;
i=0 1=0

® We will prove, that a; and d; could be selected in a very efficient way (Conjugate Gradient method).
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Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let k=0 and = o, count di, = do = —V f(x0).
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Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dp = do = —V f(z0).
2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the
formula
dy (Azy — b)

AT Ady (3)

ap =
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Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dp = do = —V f(z0).
2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the
formula
dy (Azy — b)

dT Ads S

ap =

3. We're doing an algorithm step:
Tyl = Tk + adg
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Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dp = do = —V f(z0).
2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the

formula
_dff (Azy, —b)

dT Ads S

ap =

3. We're doing an algorithm step:
Tyl = Tk + adg

4. Update the direction: dip+1 = =V f(xr+1) + Brdi in order to make dit+1 L a di, where 3 is calculated by the

formula:
Vi(zre1) " Adg

Pre = =4 Ady
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Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1.
2.

Let £ =0 and x, = xo, count di, = do = —V f(z0).
By the procedure of line search we find the optimal length of step. Calculate o minimizing f(zr + axds) by the
formula

dy (Azy — b)

T AT Ady

®3)

. We're doing an algorithm step:

Tyl = Tk + adg

. Update the direction: dp+1 = =V f(xk+1) + Brdik in order to make di4+1 L4 di, where 3y is calculated by the

formula:
Vi(zre1) " Adg

Pre = =4 Ady

. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= zn: Ozidz'
i=1
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= Z Ozidz'
i=1
Multiply by d? A- —d] A (Z aidl)
=1
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= Z Ozidz'
i=1
Multiply by de- = djTA (Z aidi) = Z OéidjTAdi
i=1 i=1
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= Z Ozidz'
i=1
Multiply by de- = djTA (Z aidi) = Z OéidjTAdi
i=1 i=1

=a;d] Ad; +04...4+0

‘f -+ 1’11'}2 Conjugate Directions (CD) method 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= Z Ozidz'
i=1
Multiply by de- = djTA (Z aidi) = Z OéidjTAdi
i=1 i=1

=a;d] Ad; +04...4+0
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Conjugate Directions (CD) method
Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors dy,...,d, - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% .

Proof

We'll show, that if Z a;d; = 0, than all coefficients should be equal to zero:

=1

0= Z Ozidz'
i=1
Multiply by de- = djTA (Z aidi) = Z OtidjTAdi
i=1 i=1

=a;d] Ad; +04...4+0
Thus, a; = 0, for all other indices one has to perform the same process
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Proof of convergence

We will introduce the following notation:

® r. =b— Az - residual,
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Proof of convergence

We will introduce the following notation:

® r. =b— Az - residual,
® e =11 — 2" - error.
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Proof of convergence

We will introduce the following notation:

® r. =b— Az - residual,
® e =11 — 2" - error.
® Since Az™ = b, we have 1, =b — Az, = Az™ — Az = — Az — x¥)

Tk = —Aek.

‘f -+ ].n:}r; Conjugate Directions (CD) method

(4)
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Proof of convergence

We will introduce the following notation:

® r. =b— Az - residual,
® e =11 — 2" - error.

® Since Az™ = b, we have r, = b — Az, = Az™ — Az = —A(zi — ™)
T = —Aek.
k
® Note also, that since xx11 = zo + Z o;d;, we have
=1

k
€k+1 = €0 + E aid;.
i=1

‘f -+ 1’11'}2 Conjugate Directions (CD) method

(4)

(5)
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that §; = —a:

n—1
eozxo—x* = E 6ldl
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method D0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.

Proof
1. We need to prove, that §; = —a:

n—1
eozxo—x* = E 6ldl
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method D0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.

Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:

n—1
602.220—13* = E 6ldl
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd,
e =z0—x" = Z did; i=0
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
e =z0—x" = Z did; i=0
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
e =z0—x" = Z did; i=0
1=0

k—1
dF A eo + Z oud;
i=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
e =z0—x" = Z did; i=0
1=0

k—1
dEA eo + Z o;d; = dgAek
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
e =z0—x" = Z did; i=0
1=0

k—1
dTA | eo + Z aid; | = dF Aey, = 6,df Adr, (A — orthogonality)
1=0

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O 12
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

with a; = % taken from the line search, converges for at most n steps of the algorithm.
Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
e =z0—x" = Z did; i=0
1=0

k—1
dl A <eo + Z aidi> =d} Ae, = 6,dl Ad, (A — orthogonality)
=0

_ d{Aek
~ dl Ady,

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O 12
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

3T

with a; = % taken from the line search, converges for at most n steps of the algorithm.

Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
€0 = X0 — x* = Z 6ldl i=0
=0

k—1
dl A <eo + Z aidi> =d} Ae, = 6,dl Ad, (A — orthogonality)
=0

_ d{Aek _ dgrk
CdlAdy  df Ady

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O 12

Ok
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Proof of convergence

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

k
Tk41 = XTo + E a;d;
i=0

3T

with a; = % taken from the line search, converges for at most n steps of the algorithm.

Proof 2. We multiply both hand sides from the left by df A:
1. We need to prove, that §; = —a:
n—1
n—l d£A60 = Zé,dZAd, = 5kd£Adk
€0 = X0 — x* = Z 6ldl i=0
=0

k—1
dl A <eo + Z aidi> =d} Ae, = 6,dl Ad, (A — orthogonality)
=0

_ d{Aek _ dgrk
CdlAdy  df Ady

‘f -+ ].".}I; Conjugate Directions (CD) method 0 O 12
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Lemms for convergence

Lemma 3. Error decomposition

‘f -+ ].n:}r; Conjugate Directions (CD) method

n—1

€; = Z —Oéjdj

g=i
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Lemms for convergence

Lemma 3. Error decomposition
n—1
€; = E —Oéjdj

g=i

Proof

By definition

i—1
e; = ep + E ojd;
Jj=0

‘f -+ 1’11'}2 Conjugate Directions (CD) method
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Lemms for convergence

Lemma 3. Error decomposition
n—1
€; = E —Oéjdj

g=i

Proof

By definition

i—1 i—1
*
e; = ep + E ojd; =x0 — " + E ojd;
=0 =0

‘f -+ 1’11'}2 Conjugate Directions (CD) method
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Lemms for convergence

Lemma 3. Error decomposition
n—1
€; = E —Oéjdj

g=i

Proof

By definition

i—1 i—1 n—1 i—1
*
e; = ep + E ojd; =x0 — " + E ojd; = — E ojd; + E a;d;
J=0 Jj=0 j=0 j=0

‘f -+ 1’11'}2 Conjugate Directions (CD) method
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Lemms for convergence

Lemma 3. Error decomposition
n—1
€; = E —Oéjdj

g=i

Proof
By definition

i—1 i—1 n—1 i—1 n—1
*
e; = ep + E ojd; =x0 — " + E ojd; = — E ojd; + E ojd; = E —ad;
j=0 j=0 j=0 j=0 Jj=t

‘f -+ 1’11'}2 Conjugate Directions (CD) method
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Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration 7, then for any i < k:

diTrk =0

‘f -+ 1’11'}2 Conjugate Directions (CD) method

(7)
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Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration 7, then for any i < k:
diTrk =0

Proof

Let's write down (6) for some fixed index k:

‘f -+ 1’11'}2 Conjugate Directions (CD) method

(7)
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Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration 7, then for any i < k:
diTrk =0

Proof

Let's write down (6) for some fixed index k:

n—1

€ = E —Oéjdj
j=k

‘f -+ ].".}I; Conjugate Directions (CD) method

(7)
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Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration 7, then for any i < k:
d;r’r‘k =0 (M

Proof

Let's write down (6) for some fixed index k: .
index

n—1

1 1 1 1
er = E —ayd; 1 T T 1
=k

0 7 k n—1

Y

Multiply both sides by —df A-
Uty both sides by —d; Thus, d7r, = 0 and residual ry is orthogonal to all previous

n—1 directions d; for the CD method.
—diTAek = Z adeTAdj =0
j=k

‘f -+ ].”.}I; Conjugate Directions (CD) method 0 O 14
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of dp, ...

‘f -+ ].n:}r; Conjugate Gradients (CG) method
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of do,...,dn—1.
® In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them
from a set of starting vectors.

‘f -+ 1’11'}2 Conjugate Gradients (CG) method D0 O 15
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of do,...,dn—1.
® In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them

from a set of starting vectors.

® The residuals on each iteration rg,...,r,_1 are used as starting vectors for Gram-Schmidt process.

‘f -+ 1’11'}2 Conjugate Gradients (CG) method
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of do,...,dn—1.

® In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them
from a set of starting vectors.

® The residuals on each iteration rg,...,r,_1 are used as starting vectors for Gram-Schmidt process.

® The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally
expensive and requires a quadratic number of vector addition and scalar product operations O (n2) while in
the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

‘f -+ ].".}I; Conjugate Gradients (CG) method
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of do,...,dn—1.

® In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them
from a set of starting vectors.

® The residuals on each iteration rg,...,r,_1 are used as starting vectors for Gram-Schmidt process.

® The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally
expensive and requires a quadratic number of vector addition and scalar product operations O (n2) while in
the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

‘f -+ ].".}I; Conjugate Gradients (CG) method
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The idea of the Conjugate Gradients (CG) method

® |t is literally the Conjugate Direction method, where we have a special (effective) choice of do,...,dn—1.

® In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them
from a set of starting vectors.

® The residuals on each iteration rg,...,r,_1 are used as starting vectors for Gram-Schmidt process.

® The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally
expensive and requires a quadratic number of vector addition and scalar product operations O (n2) while in
the case of CG, we will show that the complexity of this procedure can be reduced to linear O (n).

CG=CD +ro,...,rn—1 as starting vectors for Gram—Schmidt + A-orthogonality.

‘f -+ ].".}I; Conjugate Gradients (CG) method
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

riTrk:O Vi # k

‘f -+ 1’11'}2 Conjugate gradients (CG) method
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

riTrk =0 Vi # k
Proof

Let’s write down Gram-Schmidt process (2)
with (-,-) replaced with (-,-)4 = 2T Ay

‘f -+ ].".}I; Conjugate gradients (CG) method
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

riTrk:O Vi # k

Proof
Let’s write down Gram-Schmidt process (2)
with (-,-) replaced with (-,-)4 = 2T Ay

<dj7 Ui>A

k—1
dl':uz'-‘rzﬁjidj 5ji:—<d_ FA
79

=0

(9)

‘f -+ ].".}I; Conjugate gradients (CG) method
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

e =0 Vi # k

Proof
Let’s write down Gram-Schmidt process (2)
with (-,-) replaced with (-,-)4 = 2T Ay

<dj7 Ui>A

(dj,dj)a ©

k—1
di = u; + Zﬁjidj Bji = —

=0

Then, we use residuals as starting vectors for
the process and u; = r;.

‘f -+ ].".}I; Conjugate gradients (CG) method

(8)
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

k=0 Vi#k (8)
Proof ind
Let’s write down Gram-Schmidt process (2) mnaex
with (-,-) replaced with (-,-)4 = 2T Ay | | : | >
0 1 k n—1
k—1 ()
_ A 7y Y
di =i + Zﬁjidj Bii = — (d;,d;)a (9) Multiply both sides of (9) by 71 for some index k:
j=0
’ k—1
Then, we use residuals as starting vectors for rTd; = rTu; + Z Bjirgdj
the process and u; = r;. =
k—1
(dj7ri>A
di =71+ Bjid; Bji = —5—— (10)
2 Pty 5y (dj,dj)a

j=0
‘f -+ mm Conjugate gradients (CG) method 0 O
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Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

rire=0 Vi#k (8)
Proof ind
Let's write down Gram-Schmidt process (2) maex
with (-,-) replaced with (-,-)4 = 2T Ay | | : | >
0 7 k n—1
k—1 (d; i) a
— oy cds B = — N2 A
di = ui + Zﬁﬂdf Bii = (dj,d;)a (©) Multiply both sides of (9) by - for some index k:

j=0

! k—1
Then, we use residuals as starting vectors for rid; = riu; + Z Bjirgdj
the process and u; = r;. =

b1 If j <4 < k, we have the lemma 4 with d7 7 = 0 and dfrk =0. We

(dj,Ti)a have:
di =1+ iid; Bji = ———"——— (10 :
;BJ i i (dj,dj)a (10) rFu; =0 for CD rir; =0 for CG

‘f -+ ],”.}I; Conjugate gradients (CG) method 0 O 16
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Lemms for convergence

Moreover, if k = i:

‘f -+ 1’11'}2 Conjugate gradients (CG) method

k—1
T T T
T dk = T Uk + E Bikrk d;

Jj=0
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Lemms for convergence

Moreover, if k = i:

‘f -+ 1’11'}2 Conjugate gradients (CG) method

k—1
T T T T
rede = TR Uk + E Bikrid; = riguk + 0,

Jj=0
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Lemms for convergence

Moreover, if k = i:

‘f -+ 1’11'}2 Conjugate gradients (CG) method

k—1
T T T T
rede = TR Uk + E Bikrid; = riguk + 0,

Jj=0
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Lemms for convergence

Moreover, if k = i:
k—1

T T T
T dr = T uk + E BikTr dj

=0

and we have for any k (due to arbitrary choice of 7):

Td _ T
T = T Uk

‘f -+ ].n:}r; Conjugate gradients (CG) method

T
=riur + 0,

(11)
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Lemms for convergence

Moreover, if k = i:
k—1

r;{dk = r;‘:uk + Z ,Bjk;T’]{dj = r;?uk + 0,
j=0
and we have for any k (due to arbitrary choice of 7):
redy = T4 ug.

Lemma 6. Residual recalculation

Tk+1 =Tk — akAdk

‘f -+ 1’11'}2 Conjugate gradients (CG) method

(11)
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Lemms for convergence

Moreover, if k = i:

k—1
rdek = r;‘:uk + Z Bjkr;{dj = r;?uk + 0,
j=0
and we have for any k (due to arbitrary choice of 7):
T di = T3 . (11)
Lemma 6. Residual recalculation
Tr+1 = Tk — apAdy (12)

Tht+1 = —Aek+1 =-A (ek + akdk) = —Aer — arAd = i, — o Ady

Finally, all these above lemmas are enough to prove, that 8;; = 0 for all %, j, except the neighboring ones.

‘f -+ 1’11'}2 Conjugate gradients (CG) method 0 O 17
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method
<dj7 ui>A

P = (dj,dj)a

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

ﬁji _ <dj7 ’u,l'>,4 _ deuz

(dj,dj)a — dT Ad,

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = = A TdTAd;  dTAd

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

(dj, ui)a dj Au; dj Ar; ri Ad,

Bji = — = = =

(dj,djya — dFAd;  dTAd;  dFAd;

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

(dj, ui)a dj Au; dj Ar; ri Ad,

Bji = — = = =

(dj,djya — dFAd;  dTAd;  dFAd;
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

By = C{djyui)a _ djAu _ djAr  rlAd

(dj,djya — dFAd;  dTAd;  dFAd;

Consider the scalar product (r;,7j+1) using (12):

(risrj+1)

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

(dj, ui)a dj Au;

dj Ar; ri Ad;

P Ty T A

Consider the scalar product (r;,7j+1) using (12):

(risrj+1) = (ri,r; — a; Ady)

‘f -+ ].n:}r; Conjugate gradients (CG) method

CdFAd; — dTAd;
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

By = C{djyui)a _ djAu _ djAr  rlAd

(dj,djya — dFAd;  dTAd;  dFAd;

Consider the scalar product (r;,7j+1) using (12):

(ri,mit1) = (ri,rj — a; Adj) = (ri,rj5) — a;(ri, Adj)

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

By = C{djyui)a _ djAu _ djAr  rlAd

(dj,djya — dFAd;  dTAd;  dFAd;

Consider the scalar product (r;,7j+1) using (12):
(ri,rje1) = (re, vy — a; Ady) = (ri,rj) — a;(ri, Ad;)
a;(ri, Ad;)

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

By = C{djyui)a _ djAu _ djAr  rlAd

(dj,djya — dFAd;  dTAd;  dFAd;

Consider the scalar product (r;,7j+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

‘f -+ ].n:}r; Conjugate gradients (CG) method
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

ﬁ" _ _<dj7ui>A o _dz—'Auz - _d?ATz . _TZAd]
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,7j+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuida  djAug  djAr [ Ad,
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)
3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)
3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
'I‘TAdj

Bii = ——
’ dT Ad;

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
ri Ad; 1 (rire)

Biji = —— - =
’ dTAd; — a; dT Ad;

‘f -+ 1’11'}2 Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
TTAdj 1 <Ti,7'i> _ ded] <7‘i,1"1‘>

Pit =TT Ad, ~ oy dTAdy ~ dTr, dTAd;

‘f -+ ].".}I; Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
rfAdy 1 (rir) _ diAd (riyr)  (rar)

bii = TdTAd; oy dTAd;  dTr; dTAd;  (rj,ry)

‘f -+ ].".}I; Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
rfAd; 1 (rira) _ dj Ady (rirs) (i) (rar)

,Bji - _d?Adj - Oéj dedj o df’f‘j d?Ad] o <Tj7’l“j> <7’i71,7“1‘71>

‘f -+ ].".}I; Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
rfAd; 1 (rira) _ dj Ady (rirs) (i) (rar)

,Bji - _d?Adj - Oéj dedj o df’f‘j d?Ad] o <Tj7’l“j> <7’i71,7“1‘71>

‘f -+ ].".}I; Conjugate gradients (CG) method D0
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Gram-Schmidt process in CG method
Consider the Gram-Schmidt process in the CG method

B = C(djuda  djAuw  djAn el Ad;
0 (dj,di)a  dTAd;  dTAd;  dTAdy

Consider the scalar product (r;,r;+1) using (12):
(ri,rj1) = (ri, v — ajAdj) = (ri, ) — o (ri, Ady)

o (ri, Ady) = (ri,rj) — (ri, 7j41)

1. If i =j: a;(ri, Ads) = (rs,7:) — (ri, 7i41) = (rs, 7). This case is not of interest due to the GS process.

2. Neighboring case i = j + 1: a;(ri, Ad;) = (ri,mic1) — (ri,rs) = —(rs, 73)

3. For any other case: «;(r;, Ad;) = 0, because all residuals are orthogonal to each other.
Finally, we have a formula for i = j 4 1:
rfAd; 1 (rira) _ dj Ady (rirs) (i) (rar)

,Bji - _d?Adj - Oéj dedj o df’f‘j d?Ad] o <Tj7’l“j> <7’i71,7“1‘71>

And for the direction
(Pht1, Thr1)
(re,me)

‘f -+ ].".}I; Conjugate gradients (CG) method D0
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Conjugate gradients method

ro:=b— Axo
if ro is sufficiently small, then return xo as the result
do :=ro
k=0
repeat
riry
ay = m

Xpt1 i= Xk + ardy
Y41 =T — ClkAdk

if rp41 is sufficiently small, then exit loop

rZ+1rk+l
By = —ht1ThHL
r, Tk
dit1 :=rrs1 + Bedr
k:=k+1
end repeat

) return xx41 as the result
‘f -+ mim Conjugate gradients (CG) method
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Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in r
iterations.

Theorem 2. The following convergence bound holds

. r(4) —1 .
2k —a™la <2 === llzo—a7|a,

K(A)+1

where ||z||4 = 27 Az and k(A) = ;i((ﬁ; is the conditioning number of matrix A, A\1(A) > ... > X\, (A) are the
eigenvalues of matrix A

Note: Compare the coefficient of the geometric progression with its analog in gradient descent.

‘f -+ ].”.}I; Conjugate gradients (CG) method 0 O
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Numerical results

flx) = 1 TAz — b2z — min
2 Tz€ER™

Convex quadratics. n=60, random matrix.
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Numerical results

Eigenvalues of A
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Strongly convex quadratics. n=60, random matrix.
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R f— min

Numerical results
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Numerical results

fz) = 2" Az — b"x — min
TER™

Strongly convex quadratics. n=60, clustered matrix.
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Numerical results
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Numerical results

Eigenvalues
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Strongly convex quadratics. n=60, uniform spectrum matrix.
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Numerical results

flx) = 1 TAz — b2z — min
2 Tz€ER™

Strongly convex quadratics. n=60, Hilbert matrix.
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Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve

the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:
Tr1 — Tk = cdy,

where ¢ is some kind of constant. Then for the quadratic case, we have:
Vf(l‘k+1) — Vf(l’k) = (Al’k+1 — b) — (Al’k — b) = A($k+1 — a:k) = CAdk

Expressing from this equation the work Ady = 1 (Vf(zr+1) — Vf(zx)), we get rid of the “knowledge” of the
c
function in step definition B, then point 4 will be rewritten as:

Vf(@r1) " (Vf(xri1) = Vi(xr)
df (Vf(xrer) = V()

This method is called the Polack-Ribier method.
‘f‘”.,l.‘.jr; Non-linear CG @0 O
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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