Conjugate gradients method

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

Strongly convex quadratics

Consider the following quadratic optimization problem:
Optimality conditions

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x)=\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{n} . \tag{1}
\end{equation*}
$$

$$
A x^{*}=b
$$

Steepest Descent

Conjugate Gradient

Exact line search aka steepest descent

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

Exact line search aka steepest descent

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

Optimality conditions:

Exact line search aka steepest descent

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

Optimality conditions:

$$
\nabla f\left(x_{k}\right)^{T} \nabla f\left(x_{k+1}\right)=0
$$

Optimal value for quadratics

$$
\nabla f\left(x_{k}\right)^{\top} A\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-\nabla f\left(x_{k}\right)^{\top} b=0 \quad \alpha_{k}=\frac{\nabla f\left(x_{k}\right)^{T} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{T} A \nabla f\left(x_{k}\right)}
$$

Figure 1: Steepest
Descent
Open In Colab

Conjugate directions. A-orthogonality.

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x \quad \frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x
$$

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x \quad \frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x \quad \frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}=\frac{1}{2} x^{T} I x
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x
$$

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}=\frac{1}{2} x^{T} I x \quad \text { if } x=\Lambda^{\frac{1}{2}} Q^{T} \hat{x}
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x
$$

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}=\frac{1}{2} x^{T} I x \quad \text { if } x=\Lambda^{\frac{1}{2}} Q^{T} \hat{x} \text { and } \hat{x}=Q \Lambda^{-\frac{1}{2}} x
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x
$$

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}=\frac{1}{2} x^{T} I x \quad \text { if } x=\Lambda^{\frac{1}{2}} Q^{T} \hat{x} \text { and } \hat{x}=Q \Lambda^{-\frac{1}{2}} x
$$

Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function $f(x)=\frac{1}{2} x^{T} I x$ looks just like on the left part of Figure 2, while in other coordinates it looks like $f(\hat{x})=\frac{1}{2} \hat{x}^{T} A \hat{x}$, where $A \in \mathbb{S}_{++}^{n}$.

$$
\frac{1}{2} x^{T} I x
$$

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}
$$

Since $A=Q \Lambda Q^{T}$:

$$
\frac{1}{2} \hat{x}^{T} A \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda Q^{T} \hat{x}=\frac{1}{2} \hat{x}^{T} Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^{T} \hat{x}=\frac{1}{2} x^{T} I x \quad \text { if } x=\Lambda^{\frac{1}{2}} Q^{T} \hat{x} \text { and } \hat{x}=Q \Lambda^{-\frac{1}{2}} x
$$$A$-orthogonal vectors

Vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ are called A-orthogonal (or A-conjugate) if

$$
x^{T} A y=0 \quad \Leftrightarrow \quad x \perp_{A} y
$$

When $A=I, A$-orthogonality becomes orthogonality.

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

Figure 3: Illustration of Gram-Schmidt orthogonalization process

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

Figure 4: Illustration of Gram-Schmidt orthogonalization process

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

Figure 5: Illustration of Gram-Schmidt orthogonalization process

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

Figure 6: Illustration of Gram-Schmidt orthogonalization process

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

Figure 7: Illustration of Gram-Schmidt orthogonalization process

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
d_{0}=u_{0}
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right)
\end{aligned}
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right) \\
d_{2} & =u_{2}-\pi_{d_{0}}\left(u_{2}\right)-\pi_{d_{1}}\left(u_{2}\right)
\end{aligned}
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right) \\
d_{2} & =u_{2}-\pi_{d_{0}}\left(u_{2}\right)-\pi_{d_{1}}\left(u_{2}\right)
\end{aligned}
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right) \\
d_{2} & =u_{2}-\pi_{d_{0}}\left(u_{2}\right)-\pi_{d_{1}}\left(u_{2}\right)
\end{aligned}
$$

$$
d_{k}=u_{k}-\sum_{i=0}^{k-1} \pi_{d_{i}}\left(u_{k}\right)
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right) \\
d_{2} & =u_{2}-\pi_{d_{0}}\left(u_{2}\right)-\pi_{d_{1}}\left(u_{2}\right)
\end{aligned}
$$

$$
d_{k}=u_{k}-\sum_{i=0}^{k-1} \pi_{d_{i}}\left(u_{k}\right)
$$

Gram-Schmidt process

Input: n linearly independent vectors u_{0}, \ldots, u_{n-1}.
Output: n linearly independent vectors, which are pairwise orthogonal d_{0}, \ldots, d_{n-1}.

$$
\begin{aligned}
d_{0} & =u_{0} \\
d_{1} & =u_{1}-\pi_{d_{0}}\left(u_{1}\right) \\
d_{2} & =u_{2}-\pi_{d_{0}}\left(u_{2}\right)-\pi_{d_{1}}\left(u_{2}\right)
\end{aligned}
$$

$$
d_{k}=u_{k}-\sum_{i=0}^{k-1} \pi_{d_{i}}\left(u_{k}\right)
$$

$$
\begin{equation*}
d_{k}=u_{k}+\sum_{i=0}^{k-1} \beta_{i k} d_{i} \quad \beta_{i k}=-\frac{\left\langle d_{i}, u_{k}\right\rangle}{\left\langle d_{i}, d_{i}\right\rangle} \tag{2}
\end{equation*}
$$

General idea

- In an isotropic $A=I$ world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.

General idea

- In an isotropic $A=I$ world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_{0}, \ldots, d_{n-1} (which will be computed with Gram-Schmidt process).

General idea

- In an isotropic $A=I$ world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_{0}, \ldots, d_{n-1} (which will be computed with Gram-Schmidt process).
- We would like to build a method, that goes from x_{0} to the x^{*} for the quadratic problem with stepsizes α_{i}, which is, in fact, just the decomposition of $x^{*}-x_{0}$ to some basis:

$$
x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i} \quad x^{*}-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i}
$$

General idea

- In an isotropic $A=I$ world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_{0}, \ldots, d_{n-1} (which will be computed with Gram-Schmidt process).
- We would like to build a method, that goes from x_{0} to the x^{*} for the quadratic problem with stepsizes α_{i}, which is, in fact, just the decomposition of $x^{*}-x_{0}$ to some basis:

$$
x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i} \quad x^{*}-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i}
$$

- We will prove, that α_{i} and d_{i} could be selected in a very efficient way (Conjugate Gradient method).

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let $k=0$ and $x_{k}=x_{0}$, count $d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let $k=0$ and $x_{k}=x_{0}$, count $d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$ by the formula

$$
\begin{equation*}
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}} \tag{3}
\end{equation*}
$$

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let $k=0$ and $x_{k}=x_{0}$, count $d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$ by the formula

$$
\begin{equation*}
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}} \tag{3}
\end{equation*}
$$

3. We're doing an algorithm step:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let $k=0$ and $x_{k}=x_{0}$, count $d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$ by the formula

$$
\begin{equation*}
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}} \tag{3}
\end{equation*}
$$

3. We're doing an algorithm step:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

4. Update the direction: $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$ in order to make $d_{k+1} \perp_{A} d_{k}$, where β_{k} is calculated by the formula:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}} .
$$

Idea of Conjugate Directions (CD) method

Thus, we formulate an algorithm:

1. Let $k=0$ and $x_{k}=x_{0}$, count $d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$ by the formula

$$
\begin{equation*}
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}} \tag{3}
\end{equation*}
$$

3. We're doing an algorithm step:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

4. Update the direction: $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$ in order to make $d_{k+1} \perp_{A} d_{k}$, where β_{k} is calculated by the formula:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}} .
$$

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
0=\sum_{i=1}^{n} \alpha_{i} d_{i}
$$

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} \alpha_{i} d_{i} \\
\text { Multiply by } d_{j}^{T} A . & =d_{j}^{\top} A\left(\sum_{i=1}^{n} \alpha_{i} d_{i}\right)
\end{aligned}
$$

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
\begin{aligned}
& \qquad \begin{array}{l}
0=\sum_{i=1}^{n} \alpha_{i} d_{i} \\
\text { Multiply by } d_{j}^{T} A \cdot \\
=d_{j}^{\top} A\left(\sum_{i=1}^{n} \alpha_{i} d_{i}\right)=\sum_{i=1}^{n} \alpha_{i} d_{j}^{\top} A d_{i}
\end{array},=\text {. }
\end{aligned}
$$

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
\begin{aligned}
& 0=\sum_{i=1}^{n} \alpha_{i} d_{i} \\
& \text { Multiply by } d_{j}^{T} A . \quad=d_{j}^{\top} A\left(\sum_{i=1}^{n} \alpha_{i} d_{i}\right)=\sum_{i=1}^{n} \alpha_{i} d_{j}^{\top} A d_{i} \\
& =\alpha_{j} d_{j}^{\top} A d_{j}+0+\ldots+0
\end{aligned}
$$

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
\begin{aligned}
& 0=\sum_{i=1}^{n} \alpha_{i} d_{i} \\
& \text { Multiply by } d_{j}^{T} A . \quad=d_{j}^{\top} A\left(\sum_{i=1}^{n} \alpha_{i} d_{i}\right)=\sum_{i=1}^{n} \alpha_{i} d_{j}^{\top} A d_{i} \\
& =\alpha_{j} d_{j}^{\top} A d_{j}+0+\ldots+0
\end{aligned}
$$

Conjugate Directions (CD) method

Lemma 1. Linear independence of A-conjugate vectors.
If a set of vectors d_{1}, \ldots, d_{n} - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^{n}$.

Proof

We'll show, that if $\sum_{i=1}^{n} \alpha_{i} d_{i}=0$, than all coefficients should be equal to zero:

$$
\begin{aligned}
& 0=\sum_{i=1}^{n} \alpha_{i} d_{i} \\
& \text { Multiply by } d_{j}^{T} A . \quad=d_{j}^{\top} A\left(\sum_{i=1}^{n} \alpha_{i} d_{i}\right)=\sum_{i=1}^{n} \alpha_{i} d_{j}^{\top} A d_{i} \\
& =\alpha_{j} d_{j}^{\top} A d_{j}+0+\ldots+0
\end{aligned}
$$

Thus, $\alpha_{j}=0$, for all other indices one has to perform the same process

Proof of convergence

We will introduce the following notation:

- $r_{k}=b-A x_{k}$ - residual,

Proof of convergence

We will introduce the following notation:

- $r_{k}=b-A x_{k}$ - residual,
- $e_{k}=x_{k}-x^{*}$ - error.

Proof of convergence

We will introduce the following notation:

- $r_{k}=b-A x_{k}$ - residual,
- $e_{k}=x_{k}-x^{*}$ - error.
- Since $A x^{*}=b$, we have $r_{k}=b-A x_{k}=A x^{*}-A x_{k}=-A\left(x_{k}-x^{*}\right)$

$$
\begin{equation*}
r_{k}=-A e_{k} \tag{4}
\end{equation*}
$$

Proof of convergence

We will introduce the following notation:

- $r_{k}=b-A x_{k}$ - residual,
- $e_{k}=x_{k}-x^{*}$ - error.
- Since $A x^{*}=b$, we have $r_{k}=b-A x_{k}=A x^{*}-A x_{k}=-A\left(x_{k}-x^{*}\right)$

$$
\begin{equation*}
r_{k}=-A e_{k} \tag{4}
\end{equation*}
$$

- Note also, that since $x_{k+1}=x_{0}+\sum_{i=1}^{k} \alpha_{i} d_{i}$, we have

$$
\begin{equation*}
e_{k+1}=e_{0}+\sum_{i=1}^{k} \alpha_{i} d_{i} \tag{5}
\end{equation*}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

2. We multiply both hand sides from the left by $d_{k}^{T} A$:
3. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

2. We multiply both hand sides from the left by $d_{k}^{T} A$:

$$
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

2. We multiply both hand sides from the left by $d_{k}^{T} A$:

$$
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
\text { 2. We multiply both hand sides from the left by } d_{k}^{T} A \text { : }
$$

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

$$
\begin{array}{r}
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)
\end{array}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
\text { 2. We multiply both hand sides from the left by } d_{k}^{T} A \text { : }
$$

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

$$
\begin{aligned}
& \quad d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
& d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)=d_{k}^{T} A e_{k}
\end{aligned}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

$$
\text { 2. We multiply both hand sides from the left by } d_{k}^{T} A \text { : }
$$

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

$$
\begin{gathered}
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)=d_{k}^{T} A e_{k}=\delta_{k} d_{k}^{T} A d_{k} \quad(A-\text { orthogonality })
\end{gathered}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

2. We multiply both hand sides from the left by $d_{k}^{T} A$:

$$
\begin{gathered}
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)=d_{k}^{T} A e_{k}=\delta_{k} d_{k}^{T} A d_{k} \quad(A-\text { orthogonality }) \\
\delta_{k}=\frac{d_{k}^{T} A e_{k}}{d_{k}^{T} A d_{k}}
\end{gathered}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

2. We multiply both hand sides from the left by $d_{k}^{T} A$:

$$
\begin{gathered}
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)=d_{k}^{T} A e_{k}=\delta_{k} d_{k}^{T} A d_{k} \quad(A-\text { orthogonality }) \\
\delta_{k}=\frac{d_{k}^{T} A e_{k}}{d_{k}^{T} A d_{k}}=-\frac{d_{k}^{T} r_{k}}{d_{k}^{T} A d_{k}}
\end{gathered}
$$

Proof of convergence

Lemma 2. Convergence of conjugate direction method.
Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

with $\alpha_{i}=\frac{\left\langle d_{i}, r_{i}\right\rangle}{\left\langle d_{i}, A d_{i}\right\rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_{i}=-\alpha_{i}$:

$$
e_{0}=x_{0}-x^{*}=\sum_{i=0}^{n-1} \delta_{i} d_{i}
$$

2. We multiply both hand sides from the left by $d_{k}^{T} A$:

$$
\begin{gathered}
d_{k}^{T} A e_{0}=\sum_{i=0}^{n-1} \delta_{i} d_{k}^{T} A d_{i}=\delta_{k} d_{k}^{T} A d_{k} \\
d_{k}^{T} A\left(e_{0}+\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)=d_{k}^{T} A e_{k}=\delta_{k} d_{k}^{T} A d_{k} \quad(A-\text { orthogonality }) \\
\delta_{k}=\frac{d_{k}^{T} A e_{k}}{d_{k}^{T} A d_{k}}=-\frac{d_{k}^{T} r_{k}}{d_{k}^{T} A d_{k}} \Leftrightarrow \delta_{k}=-\alpha_{k}
\end{gathered}
$$

Lemms for convergence

Lemma 3. Error decomposition

$$
\begin{equation*}
e_{i}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j} \tag{6}
\end{equation*}
$$

Lemms for convergence

Lemma 3. Error decomposition

$$
\begin{equation*}
e_{i}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j} \tag{6}
\end{equation*}
$$

Proof
By definition

$$
e_{i}=e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}
$$

Lemms for convergence

Lemma 3. Error decomposition

$$
\begin{equation*}
e_{i}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j} \tag{6}
\end{equation*}
$$

Proof

By definition

$$
e_{i}=e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=x_{0}-x^{*}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}
$$

Lemms for convergence

Lemma 3. Error decomposition

$$
\begin{equation*}
e_{i}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j} \tag{6}
\end{equation*}
$$

Proof

By definition

$$
e_{i}=e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=x_{0}-x^{*}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}
$$

Lemms for convergence

Lemma 3. Error decomposition

$$
\begin{equation*}
e_{i}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j} \tag{6}
\end{equation*}
$$

Proof

By definition

$$
e_{i}=e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=x_{0}-x^{*}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=\sum_{j=i}^{n-1}-\alpha_{j} d_{j}
$$

Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration r_{k}, then for any $i<k$:

$$
\begin{equation*}
d_{i}^{T} r_{k}=0 \tag{7}
\end{equation*}
$$

Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration r_{k}, then for any $i<k$:

$$
\begin{equation*}
d_{i}^{T} r_{k}=0 \tag{7}
\end{equation*}
$$

Proof

Let's write down (6) for some fixed index k :

Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration r_{k}, then for any $i<k$:

$$
\begin{equation*}
d_{i}^{T} r_{k}=0 \tag{7}
\end{equation*}
$$

Proof

Let's write down (6) for some fixed index k :

$$
e_{k}=\sum_{j=k}^{n-1}-\alpha_{j} d_{j}
$$

Lemms for convergence

Lemma 4. Residual is orthogonal to all previous directions for CD
Consider residual of the CD method at k iteration r_{k}, then for any $i<k$:

$$
\begin{equation*}
d_{i}^{T} r_{k}=0 \tag{7}
\end{equation*}
$$

Proof

Let's write down (6) for some fixed index k :

$$
e_{k}=\sum_{j=k}^{n-1}-\alpha_{j} d_{j}
$$

Multiply both sides by $-d_{i}^{T} A$.

$$
-d_{i}^{T} A e_{k}=\sum_{j=k}^{n-1} \alpha_{j} d_{i}^{T} A d_{j}=0
$$

Thus, $d_{i}^{T} r_{k}=0$ and residual r_{k} is orthogonal to all previous directions d_{i} for the CD method.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.
- In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from a set of starting vectors.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.
- In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from a set of starting vectors.
- The residuals on each iteration r_{0}, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.
- In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from a set of starting vectors.
- The residuals on each iteration r_{0}, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^{2}\right)$, while in the case of CG, we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}(n)$.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.
- In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from a set of starting vectors.
- The residuals on each iteration r_{0}, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^{2}\right)$, while in the case of CG, we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}(n)$.

The idea of the Conjugate Gradients (CG) method

- It is literally the Conjugate Direction method, where we have a special (effective) choice of d_{0}, \ldots, d_{n-1}.
- In fact, we use the Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from a set of starting vectors.
- The residuals on each iteration r_{0}, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method, the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^{2}\right)$, while in the case of CG, we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}(n)$.

$$
\mathrm{CG}=\mathrm{CD}+r_{0}, \ldots, r_{n-1} \text { as starting vectors for Gram-Schmidt }+A \text {-orthogonality. }
$$

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Proof

Let's write down Gram-Schmidt process (2) with $\langle\cdot, \cdot\rangle$ replaced with $\langle\cdot, \cdot\rangle_{A}=x^{T} A y$

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Proof

Let's write down Gram-Schmidt process (2) with $\langle\cdot, \cdot\rangle$ replaced with $\langle\cdot, \cdot\rangle_{A}=x^{T} A y$

$$
\begin{equation*}
d_{i}=u_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \quad \beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}} \tag{9}
\end{equation*}
$$

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Proof

Let's write down Gram-Schmidt process (2)
with $\langle\cdot, \cdot\rangle$ replaced with $\langle\cdot, \cdot\rangle_{A}=x^{T} A y$

$$
\begin{equation*}
d_{i}=u_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \quad \beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}} \tag{9}
\end{equation*}
$$

Then, we use residuals as starting vectors for the process and $u_{i}=r_{i}$.

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Proof

Let's write down Gram-Schmidt process (2)

$$
d_{i}=u_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \quad \beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}
$$

(9) Multiply both sides of (9) by r_{k}^{T}. for some index k :

Then, we use residuals as starting vectors for the process and $u_{i}=r_{i}$.

$$
r_{k}^{T} d_{i}=r_{k}^{T} u_{i}+\sum_{j=0}^{k-1} \beta_{j i} r_{k}^{T} d_{j}
$$

$$
\begin{equation*}
d_{i}=r_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \quad \beta_{j i}=-\frac{\left\langle d_{j}, r_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}} \tag{10}
\end{equation*}
$$

Lemms for convergence

Lemma 5. Residuals are orthogonal to each other in the CG method
All residuals are pairwise orthogonal to each other in the CG method:

$$
\begin{equation*}
r_{i}^{T} r_{k}=0 \quad \forall i \neq k \tag{8}
\end{equation*}
$$

Proof

Let's write down Gram-Schmidt process (2)
index
with $\langle\cdot, \cdot\rangle$ replaced with $\langle\cdot, \cdot\rangle_{A}=x^{T} A y$

$$
d_{i}=u_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \quad \beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}
$$

(9) Multiply both sides of (9) by r_{k}^{T}. for some index k :

Then, we use residuals as starting vectors for the process and $u_{i}=r_{i}$.

$$
r_{k}^{T} d_{i}=r_{k}^{T} u_{i}+\sum_{j=0}^{k-1} \beta_{j i} r_{k}^{T} d_{j}
$$

$d_{i}=r_{i}+\sum_{j=0}^{k-1} \beta_{j i} d_{j} \beta_{j i}=-\frac{\left\langle d_{j}, r_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}$
If $j<i<k$, we have the lemma 4 with $d_{i}^{T} r_{k}=0$ and $d_{j}^{T} r_{k}=0$. We have:

$$
\begin{equation*}
r_{k}^{T} u_{i}=0 \text { for CD } r_{k}^{T} r_{i}=0 \text { for CG } \tag{10}
\end{equation*}
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}=r_{k}^{T} u_{k}+0
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}=r_{k}^{T} u_{k}+0
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}=r_{k}^{T} u_{k}+0
$$

and we have for any k (due to arbitrary choice of i):

$$
\begin{equation*}
r_{k}^{T} d_{k}=r_{k}^{T} u_{k} \tag{11}
\end{equation*}
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}=r_{k}^{T} u_{k}+0
$$

and we have for any k (due to arbitrary choice of i):

$$
\begin{equation*}
r_{k}^{T} d_{k}=r_{k}^{T} u_{k} \tag{11}
\end{equation*}
$$

Lemma 6. Residual recalculation

$$
\begin{equation*}
r_{k+1}=r_{k}-\alpha_{k} A d_{k} \tag{12}
\end{equation*}
$$

Lemms for convergence

Moreover, if $k=i$:

$$
r_{k}^{T} d_{k}=r_{k}^{T} u_{k}+\sum_{j=0}^{k-1} \beta_{j k} r_{k}^{T} d_{j}=r_{k}^{T} u_{k}+0
$$

and we have for any k (due to arbitrary choice of i):

$$
\begin{equation*}
r_{k}^{T} d_{k}=r_{k}^{T} u_{k} \tag{11}
\end{equation*}
$$

Lemma 6. Residual recalculation

$$
\begin{equation*}
r_{k+1}=r_{k}-\alpha_{k} A d_{k} \tag{12}
\end{equation*}
$$

$$
r_{k+1}=-A e_{k+1}=-A\left(e_{k}+\alpha_{k} d_{k}\right)=-A e_{k}-\alpha_{k} A d_{k}=r_{k}-\alpha_{k} A d_{k}
$$

Finally, all these above lemmas are enough to prove, that $\beta_{j i}=0$ for all i, j, except the neighboring ones.

Gram-Schmidt process in CG method

 Consider the Gram-Schmidt process in the CG method$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\left\langle r_{i}, r_{j+1}\right\rangle
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\left\langle r_{i}, r_{j+1}\right\rangle=\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\left\langle r_{i}, r_{j+1}\right\rangle=\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
&\left\langle r_{i}, r_{j+1}\right\rangle=\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
& \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle
\end{aligned}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}} .
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the $G S$ process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{d_{j}^{T} A d_{j}}{d_{j}^{T} r_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{d_{j}^{T} A d_{j}}{d_{j}^{T} r_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{j}, r_{j}\right\rangle}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{d_{j}^{T} A d_{j}}{d_{j}^{T} r_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{j}, r_{j}\right\rangle}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{i-1}, r_{i-1}\right\rangle}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{d_{j}^{T} A d_{j}}{d_{j}^{T} r_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{j}, r_{j}\right\rangle}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{i-1}, r_{i-1}\right\rangle}
$$

Gram-Schmidt process in CG method

Consider the Gram-Schmidt process in the CG method

$$
\beta_{j i}=-\frac{\left\langle d_{j}, u_{i}\right\rangle_{A}}{\left\langle d_{j}, d_{j}\right\rangle_{A}}=-\frac{d_{j}^{T} A u_{i}}{d_{j}^{T} A d_{j}}=-\frac{d_{j}^{T} A r_{i}}{d_{j}^{T} A d_{j}}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}
$$

Consider the scalar product $\left\langle r_{i}, r_{j+1}\right\rangle$ using (12):

$$
\begin{aligned}
\left\langle r_{i}, r_{j+1}\right\rangle & =\left\langle r_{i}, r_{j}-\alpha_{j} A d_{j}\right\rangle=\left\langle r_{i}, r_{j}\right\rangle-\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle \\
\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle & =\left\langle r_{i}, r_{j}\right\rangle-\left\langle r_{i}, r_{j+1}\right\rangle
\end{aligned}
$$

1. If $i=j: \alpha_{i}\left\langle r_{i}, A d_{i}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle-\left\langle r_{i}, r_{i+1}\right\rangle=\left\langle r_{i}, r_{i}\right\rangle$. This case is not of interest due to the GS process.
2. Neighboring case $i=j+1: \alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=\left\langle r_{i}, r_{i-1}\right\rangle-\left\langle r_{i}, r_{i}\right\rangle=-\left\langle r_{i}, r_{i}\right\rangle$
3. For any other case: $\alpha_{j}\left\langle r_{i}, A d_{j}\right\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for $i=j+1$:

$$
\beta_{j i}=-\frac{r_{i}^{T} A d_{j}}{d_{j}^{T} A d_{j}}=\frac{1}{\alpha_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{d_{j}^{T} A d_{j}}{d_{j}^{T} r_{j}} \frac{\left\langle r_{i}, r_{i}\right\rangle}{d_{j}^{T} A d_{j}}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{j}, r_{j}\right\rangle}=\frac{\left\langle r_{i}, r_{i}\right\rangle}{\left\langle r_{i-1}, r_{i-1}\right\rangle}
$$

And for the direction

$$
d_{k+1}=r_{k+1}+\beta_{k, k+1} d_{k}, \quad \beta_{k, k+1}=\beta_{k}=\frac{\left\langle r_{k+1}, r_{k+1}\right\rangle}{\left\langle r_{k}, r_{k}\right\rangle}
$$

Conjugate gradients method

$$
\mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}
$$

if \mathbf{r}_{0} is sufficiently small, then return \mathbf{x}_{0} as the result

$$
\mathbf{d}_{0}:=\mathbf{r}_{0}
$$

$$
k:=0
$$

repeat

$$
\alpha_{k}:=\frac{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{d}_{k}^{\top} \mathbf{A d} \mathbf{d}_{k}}
$$

$$
\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}
$$

$$
\mathbf{r}_{k+1}:=\mathbf{r}_{k}-\alpha_{k} \mathbf{A} \mathbf{d}_{k}
$$

$$
\text { if } \mathbf{r}_{k+1} \text { is sufficiently small, then exit loop }
$$

$$
\beta_{k}:=\frac{\mathbf{r}_{k+1}^{\top} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}
$$

$$
\mathbf{d}_{k+1}:=\mathbf{r}_{k+1}+\beta_{k} \mathbf{d}_{k}
$$

$$
k:=k+1
$$

end repeat
return \mathbf{x}_{k+1} as the result

Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in r iterations.

Theorem 2. The following convergence bound holds

$$
\left\|x_{k}-x^{*}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{k}\left\|x_{0}-x^{*}\right\|_{A}
$$

where $\|x\|_{A}^{2}=x^{\top} A x$ and $\kappa(A)=\frac{\lambda_{1}(A)}{\lambda_{n}(A)}$ is the conditioning number of matrix $A, \lambda_{1}(A) \geq \ldots \geq \lambda_{n}(A)$ are the eigenvalues of matrix A

Note: Compare the coefficient of the geometric progression with its analog in gradient descent.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Convex quadratics. $n=60$, random matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $n=60$, random matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $n=60$, random matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $\mathrm{n}=60$, clustered matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $\mathrm{n}=600$, clustered matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $n=60$, uniform spectrum matrix.

Numerical results

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Strongly convex quadratics. $\mathrm{n}=60$, Hilbert matrix.

Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

$$
x_{k+1}-x_{k}=c d_{k}
$$

where c is some kind of constant. Then for the quadratic case, we have:

$$
\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)=\left(A x_{k+1}-b\right)-\left(A x_{k}-b\right)=A\left(x_{k+1}-x_{k}\right)=c A d_{k}
$$

Expressing from this equation the work $A d_{k}=\frac{1}{c}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)$, we get rid of the "knowledge" of the function in step definition β_{k}, then point 4 will be rewritten as:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)}{d_{k}^{\top}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)} .
$$

This method is called the Polack-Ribier method.

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=0$

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=1$

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=1$

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=1$

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=10$

Numerical results

$$
f(x)=\frac{\mu}{2}\|x\|_{2}^{2}+\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

Regularized binary logistic regression. $n=300 . m=1000 . \mu=10$

