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Constrained optimization

Unconstrained optimization

min f(z)

rERM

® Any point xg € R" is feasible and could be a
solution.

‘f -+ 1’11'}2 Conditional methods
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(x)
rERM zES
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution.
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(x)
rERM zES
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
TER" @) xS @)
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 llz2<1
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
TER" @) xS @)
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 llz2<1
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
min f(@) min /(z)
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:
1
~||Az — b||5 = min
2 lz3<1
Gradient Descent is a great way to solve unconstrained problem
Thte1 =k — ax V f(zk) (GD)

Is it possible to tune GD to fit constrained problem?
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
min f(@) min £(0)
® Any point xg € R" is feasible and could be a ® Not all z € R™ are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 llz2<1

Gradient Descent is a great way to solve unconstrained problem
Try1 = Tk — iV f(2k) (GD)

Is it possible to tune GD to fit constrained problem?

Yes. We need to use projections to ensure feasibility on every iteration.
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w; x)

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function
f(w;z)

® Typically, input x is given and network weights
w optimized

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w; x)

® Typically, input x is given and network weights

+ w optimized
® Could also freeze weights w and optimize ,
; : adversarially!
Dugk’ <007 Horse méin size(0) s.t. pred[f(w;z+0)] £y

or

m?xl(w;w—l—é, y) s.t.size(d) <€, 0<z+6 <1

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Idea of Projected Gradient Descent

Figure 2: Suppose, we start from a point x.
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Idea of Projected Gradient Descent

S —Vf(il?k)

Figure 3: And go in the direction of —V f(zy).
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Idea of Projected Gradient Descent

yr = T — arV f(xk)

Figure 4: Occasionally, we can end up outside the feasible set.
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Idea of Projected Gradient Descent

Yk

Tr+1 = projs(yk)

Figure 5: Solve this little problem with projection!
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Idea of Projected Gradient Descent

Ye = Tk — oV f(xk)

ZTrp+1 = projg (zx — arV f(zy)) o ]
Trt1 = Projgs (k)

Y = xp — oV f(zr)

Tyy1 = Projg(yr)

Figure 6: lllustration of Projected Gradient Descent algorithm
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Projection

The distance d from point y € R™ to closed set S C R™:

d(y; S |- 1) = mf{llz —y|| [z € S}

‘ f= ].".}2 Projection
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Projection

The distance d from point y € R™ to closed set S C R™:
Ay, S, [I- 1) = nf{[lz —y|| | = € S}
We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point

projg(y) € S:

. 1 .
projs(y) = garglgmllw —yll3
S
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Projection

The distance d from point y € R™ to closed set S C R™:

d(y; S |- 1) = mf{llz —y|| [z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € 5:

. 1 .
projs(y) = garglgmllw —yll3
S

e Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.
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Projection

The distance d from point y € R™ to closed set S C R™:

d(y; S |- 1) = mf{llz —y|| [z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € 5:

. 1 .
projs(y) = garglgmllw —yll3
S

e Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.

e Sufficient conditions of uniqueness of a projection. If S C R" - closed convex set, then the projection on set
S is unique for any point.
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Projection

The distance d from point y € R™ to closed set S C R™:

d(y; S |- 1) = mf{llz —y|| [z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € 5:

. 1 .
projs(y) = garglgmllw —yll3
S

e Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.

e Sufficient conditions of uniqueness of a projection. If S C R" - closed convex set, then the projection on set
S is unique for any point.

® |f a set is open, and a point is beyond this set, then its projection on this set does not exist.
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Projection

The distance d from point y € R™ to closed set S C R™:
dy, S, - II) = inf{|le —y[| | z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € 5:

. 1 . 2
projg(y) = garglgmllw —yllz
S

Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.

Sufficient conditions of uniqueness of a projection. If S C R™ - closed convex set, then the projection on set
S is unique for any point.

If a set is open, and a point is beyond this set, then its projection on this set does not exist.

If a point is in set, then its projection is the point itself.
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem
S
Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projs(y), x — projg(y)) <0 (1) z
[l = projs()|1* + [ly — projs () I* < [l — y|? (2) )
Proof Projg (y)

1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.

Y

Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem
S
Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projs(y), x — projg(y)) <0 (1) z
[l = projs()|1* + [ly — projs () I* < [l — y|? (2) )
Proof Projg (y)

1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs(y))" (z — projg(y)) > 0 y

Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem S
Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projg(y), x — projg(y)) < 0 (1) z
[l = projs()|1* + [ly — projs () I* < [l — y|? (2) )
Proof projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs(y)) " (z — projs(y)) = 0 y
. T .
2 (projs(y) —y)" (z —projs(y)) > 0 Figure 7: Obtuse or straight angle should be

for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem

Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projg(y), x — projg(y)) < 0 (1)

llz = projs (1)1 + [ly — projs () I* < [l — y|? )
Proof
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs(y))” (z — projs(y)) > 0
2 (projs(y) — )" (z — projs(y)) > 0
0

(y = projs(y)" (= — projs(y)) <

‘ f= ].".}2 Projection

projs(y)

Y

Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem

Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projg(y), x — projg(y)) < 0 (1)

|z — projs (W)II* + lly — projs (W)II* < [l — yl|? (2
Proof

1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs (y)) " (x — projs(y)) > 0
2(projs(y) = )" (x = projs(y)) > 0
(y = projs ()" (z — projs(y)) < 0
2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with
x =z — projg(y) and y = y — projg(y). By the first property of the
theorem:

‘ f= ].".}2 Projection

projs(y)

Y

Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem S
Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projg(y), x — projg(y)) < 0 (1) z
[l = projs()|1* + [ly — projs () I* < [l — y|? (2) )
Proof projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs(y)) " (z — projs(y)) = 0 y
. T .
2 (projs(y) —y)" (z —projs(y)) > 0 Figure 7: Obtuse or straight angle should be

(y = projs(y))" (z — projg(y)) <0 for any point z € 5
2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with

x =z — projg(y) and y = y — projg(y). By the first property of the

theorem:

[ [

0> 22Ty = ||z — projg(y)||*> + Ily + projs ()II> — |lz — yl|?
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

Theorem S
Let S C R"™ be closed and convex, Va € S,y € R™. Then
(y — projg(y), x — projg(y)) < 0 (1) z
[l = projs()|1* + [ly — projs () I* < [l — y|? (2) )
Proof projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - ) = ||z — yl||% over S. By first-order characterization of
optimality.
Vd(projs(y)) " (z — projs(y)) = 0 y
. T .
2 (projs(y) —y)" (z —projs(y)) > 0 Figure 7: Obtuse or straight angle should be

(y = projs(y))" (z — projg(y)) <0 for any point z € 5
2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with

x =z — projg(y) and y = y — projg(y). By the first property of the

theorem:

[ [

0> 22Ty = ||z — projg(y)||*> + Ily + projs ()II> — |lz — yl|?
|z — projs(¥)[|* + lly + projs ()1 < |z — ylI?
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
1f (@) = fW)Il < Lllz —yll, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

!Non-expansive becomes contractive if L < 1.
‘f‘)].".ﬂ Projection 0 O
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
1f (@) = fW)Il < Lllz —yll, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:

l[proj(z) — proj(y)l2 < [lz — yll2.

!Non-expansive becomes contractive if L < 1.
‘f‘”.".ﬂ Projection 0 0
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
1f (@) = fW)Il < Lllz —yll, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:
lIproj(z) — proj(y)ll2 < [l — yll2
® Next: variational characterization implies non-expansiveness. i.e.,

(y —proj(y),z —proj(y)) <0 VeeS = |proj(z) — proj(y)ll2 < [l — yll2.

!Non-expansive becomes contractive if L < 1.
R fomin 5 L ion
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Projection operator is non-expansive
Shorthand notation: let = = proj and 7 (z) denotes proj(z).
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Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—7(y),z—7(y) <0 VzeS (3)

‘f‘)].nﬂ Projection 00 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality
(y=—7m(y),z—7(y) <0 Vzes. 3)
Replace x by w(x) in Equation 3

(y =m(y), m(z) = w(y)) <0. (4)
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Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—m(y),z—7(y) <0 Vzes.
Replace x by w(z) in Equation 3 Replace y by z and x by w(y) in Equation 3

(y =m(y),m(z) —m(y)) < 0. (4) (z — (z), 7(y) — m(x)) <O0.

‘ f= ].".}2 Projection
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Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—m(y),z—7(y) <0 Vzes A3)
Replace x by w(z) in Equation 3 Replace y by z and x by w(y) in Equation 3
(y—7(y),n(z) —n(y)) <O0. (4) (x — 7(x), 7(y) — w(z)) < 0. (5)

(Equation 4)+(Equation 5) will cancel 7w(y) — mw(x), not good. So flip the sign of (Equation 5) gives

(m(z) = z,m(z) —7(y)) < 0. (6)

‘f‘”,".ﬂ Projection 0 O 9
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Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality
(y—m(y),z—7(y) <0 Vzes.
Replace x by w(z) in Equation 3 Replace y by z and x by w(y) in Equation 3
(y =m(y), m(z) = w(y)) <0. (4) (x — m(x), 7 (y) — n(x)) < 0.
(Equation 4)+(Equation 5) will cancel 7w(y) — mw(x), not good. So flip the sign of (Equation 5) gives

(m(z) = z,m(z) —7(y)) < 0.

(y—m(y) +7(x) —z,7(z) —m(y)) <0
(y—z+m(z) —n(y),r(x) —7m(y) <0
-z m(@) —n(y)) < —(r(x) —7(y), m(z) - 7(y))
(y —a,7(y) - m(2)) > |Iw(x) — 7 (y)II3
Iy =) (r(y) = 7(2))ll2 = |Iw(2) — = (y)lI3

R fomin gL on

®3)
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Projection operator is non-expansive

Shorthand notation: let = = proj and 7 (z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—m(y),z—7(y) <0 Vzes ®3)
Replace x by w(z) in Equation 3 Replace y by z and x by w(y) in Equation 3
(y—7(y),n(z) —n(y)) <O0. (4) (x — 7(x), 7(y) — w(z)) < 0. (5)

(Equation 4)+(Equation 5) will cancel 7w(y) — mw(x), not good. So flip the sign of (Equation 5) gives
(m(z) —z,7(x) —7(y)) <0 (6)

By Cauchy-Schwarz inequality, the

(y—m(y) +m(z) —z,m(z) —7m(y)) <0 left-hand-side is upper bounded by
(y — x4 n(x) — 7(y), 7 (z) — 7(y)) <0 lly — |2l (y) — 7 (z)||2, we get
ly — zll2ll7(y) — 7(@)ll2 > I7(x) — 7 (y)]3.
(= m(@) =mly)) < =(r(@) = 7(y), (@) =7 (y)) C:incels ||7T(:L‘y) — 7(y)||2 finishes the prc:>yof.
(y —a,7(y) - m(2)) > |Iw(x) — 7 (y)II3
Iy = )" (w(y) = 7())l|2 > |7 (z) = 7 (y)I3

‘f‘”.".ﬂ Projection 0 O 9
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Example: projection on the ball
Find ms(y) =7, if S={z € R" | [z —xo]| <R}, y ¢ S

‘f -+ mim Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

‘f -+ mim Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

Check the inequality for a convex closed set: (7 — )% (z —7) >0

‘f -+ mm Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

Check the inequality for a convex closed set: (7 — )% (z —7) >0

T
(xo_“Ry—xo) (x_mO_Ry—xo>
ly — ol lly — ol

<(y —z0)(R—ly —«’B0|I))T ((«’B — @o)|ly — ol — R(y — w0)>

ly — ol| ly — ol
R_Hy—ﬂio” T .
[y — o2 (y —0)” ((x — o) [ly — zol| = R(y — o)) =
R —|ly — x| T
L0 (g — — 20) — Rlly — -
o —aall (720" (@ = 20) = Rlly = o)

(R — |ly — o) <(y_mo)(fc_x°) R>

lly — ol

‘ f= ].".}2 Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Yy—xo
lly—=oll

Check the inequality for a convex closed set: (7 — )% (z —7) >0
— Xo — R Y

- Yy — o ’ . — Zo
(“ “Rny—xou) ( ||y—xo|>
<<y—xo>(R— |y—xo||>)T ((w — wo)lly — zol] —R(y—m)

ly — ol| ly — ol

Build a hypothesis from the figure: 7 =29+ R -

w (y*xo)T((;p —z0) |ly — zo|| — R (y — z0)) =
w -z Tm—xo - — xol|) =
o (=20 @ 20) = Rlly ~ ll)
(R~ ol (LR o) )

‘f — min
e

Projection

The first factor is negative for point selection
y. The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Yy—xo
lly—=oll

Check the inequality for a convex closed set: (7 — )% (z —7) >0
— Xo — R Y

- Yy — o ’ . — Zo
(“ “Rny—xou) ( ||y—xo|>
<<y—xo>(R— |y—xo||>)T ((w — wo)lly — zol] —R(y—m)

ly — ol| ly — ol

Build a hypothesis from the figure: 7 =29+ R -

w (y*xo)T((;p —z0) |ly — zo|| — R (y — z0)) =
w -z Tm—xo - — xol|) =
o (=20 @ 20) = Rlly ~ ll)
(R~ ol (LR o) )

‘f — min
roy.s

Projection

The first factor is negative for point selection
y. The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:

(y — w0)" (z — z0) < |ly — wol|l|lz — ol
(y — z0)" (x — x0)

ly — zolll|lz — xol|
lly — ol

ly — ol

—R<
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Example: projection on the halfspace

Find 7s(y) =, if S = {x € R" | "z = b}, y ¢ S. Build a hypothesis from the figure: m =y + ac. Coefficient «
is chosen so that 7 € S: ¢T'w = b, so:

‘f‘)].nﬂ Projection D0 O 11
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Example: projection on the halfspace

Find 7s(y) =, if S = {x € R" | "z = b}, y ¢ S. Build a hypothesis from the figure: m =y + ac. Coefficient «
is chosen so that 7 € S: ¢T'w = b, so:

cTe=b

Figure 9: Hyperplane

‘f‘”,".ﬂ Projection D0 O 11
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Example: projection on the halfspace

Find ms(y) =, if S = {x € R" | ¢’z = b}, y ¢ S. Build a hypothesis from the figure: 7 = y + ac. Coefficient a
is chosen so that m € S: ¢Tw = b, so:

T

cx=">b y+ac)=b
.y cTy—|—ochc:b

N T T

. cy=b—ac c

Check the inequality for a convex closed set:
(m=y)"(@—m) >0

(y+ac—y) (x—y—ac)=

ac’(z—y—ac) =

alc"z) —alc"y) — a?(c"e) =

Figure 9: Hyperplane

ab—ab—ac’c) —a’cle=

ab—ab+a?cfe—a?cle =0 >0

‘f‘”,".ﬂ Projection D0 O 11
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Idea

R /— min

Yk = Tk — ox V f(2k)

ZTrp+1 = projg (zx — arV f(zy)) & )
Tt1 = projg (k)

yr = 2 — oV f(zg)

Tr+1 = projs(y)

Figure 10: lllustration of Projected Gradient Descent algorithm
Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = xx — %Vf(mk) and cosine rule
227y = || + [|lyl* — |z — y|I*:

‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = xx — %Vf(mk) and cosine rule
227y = || + [|lyl* — |z — y|I*:

L
Smoothness:  f(zrt1) < flak) + (Vf(ak), Tot1 — zk) + EHmk-&-l —z|?

‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = xx — %Vf(mk) and cosine rule
227y = || + [|lyl* — |z — y|I*:

L
Smoothness:  f(zrt1) < flak) + (Vf(ak), Tot1 — zk) + EHmk-&-l —z|?

L
Method: = f(xk) — L(yk — Tk, Tht1 — l’k> + §ka+1 — Z'k||2

‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = xx — %Vf(mk) and cosine rule
227y = || + [|lyl* — |z — y|I*:

L
Smoothness:  f(zrt1) < flak) + (Vf(ak), Tot1 — zk) + EHmk-&-l —z|?

L
Method: = f(xk) — L(yk — Tk, Tht1 — l’k> + §ka+1 — Z'k||2

. L L
Cosine rule: = f(r) = 5 (e — el + lwwss = oxll® = g — 241 ]2) + 5 laess — 2l ()

‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer ™ of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

+ < Lllzo—a"3

flzw) — 7 < T

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = xx — %Vf(mk) and cosine rule
227y = || + [|lyl* — |z — y|I*:

L
Smoothness:  f(zrt1) < flak) + (Vf(ak), Tot1 — zk) + EHmk-&-l —z|?

L
Method: = f(zr) — L{yx — Tk, Try1 — Tr) + §ka+1 — zi|?
. L L
Cosine rule = f(@n) = 5 (g = oull? + lowss = 2l = llge = 2ral®) + 5z = anf* )
1 L
. = f(zk) — ﬁ||vf($k)”2+§\|yk*$k+1|\2
‘f -+ ].".}I; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

(£ —a) = 3 (HIVF@OIP + llow — a2 = low 2 = 795 @)])
o _ L1 * *
(Vi@ o =o'y = 5 ( IV @I + llow = "7 =l - =71

‘f -+ ].n:}r; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

(£ —a) = 3 (HIVF@OIP + llow — a2 = low 2 = 795 @)])
(Vi@ =" = o (1T @I+ o =271 = e — 2|1

3. We will use now projection property: |z — projs(y)||> + ||y — prois (¥)||* < ||z — y||? with = 2%,y = yx:

ll* — projg (ye)l|* + llyx — projs(yi) I < llz* — yill®

lye = 21I* 2 lle” = 2 l® + llye — zasa |

‘f -+ ].n:}r; Projected Gradient Descent (PGD) 0 O
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

(£ —a) = 3 (HIVF@OIP + llow — a2 = low 2 = 795 @)])

w_ L1 * .
(Vf@)an—a) = 5 (L IV @I + o =21 = iy — "))
3. We will use now projection property: ||z — projs(y)||® + |ly — projs(v)||* < ||z — y||*> with z = 2,y = yi:

ll* — projg (ye)l|* + llyx — projs(yi) I < llz* — yill®

lye = 21I* 2 lle” = 2 l® + llye — zasa |

4. Now, using convexity and previous part:

Convexity: fze) — fF <(Vf(zw),zr — ")
L 1 * *
<3 (ﬁnwxww + ok — 217 = faner — 2" — s kaﬂuz)
k—1 k—1 1 I I i—1
. o R o . 2 ~ o 2 _ L . 2
Sum for i =0,k — 1 ;mm £ < > 57 I V@I + 5 lleo — 27| - 5 Zj lyi — zisa |

‘f -+ 1’11'}2 Projected Gradient Descent (PGD) 0 O 14
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Convergence rate for smooth and convex case

5. Bound gradients with sufficient decrease lemma 7:

k—1 k—1 i—1
. L L « L
SoU@) = £ Y [Fan) = i) + Flgs = aenl’®] + Flloo = 2717 = 5 3 s = @il
=0 =0 =0
< floo) = F@r) + 2 3 Iy~ mosallP + Sllwo — "I = 23 s — sl
=0 =0
< f(zo) = f(ex) + 2llao — 2|
k—1
S F@) = kI < Jw0) — flax) + Sllao — a7
=0
k
D ) = 1< S llwo — 27|

‘f -+ ].n:}r; Projected Gradient Descent (PGD) D0
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Convergence rate for smooth and convex case

6. Let's show monotonic decrease of the iteration of the method.

‘f -+ 1’11'}2 Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

6. Let's show monotonic decrease of the iteration of the method.

7. And finalize the convergence bound.

‘f -+ ].n:}r; Projected Gradient Descent (PGD)
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Idea

2 f— min

Frank-Wolfe Method

Figure 11: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

2 f— min

Frank-Wolfe Method

Figure 12: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /— min

Frank-Wolfe Method

Figure 13: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

2 f— min

Frank-Wolfe Method

Figure 14: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /— min

Frank-Wolfe Method

Figure 15: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /— min

Frank-Wolfe Method

Figure 16: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /— min

Frank-Wolfe Method

Figure 17: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /— min

Frank-Wolfe Method

_ Y _ .
ye = argmin f;, (z) = argmin(V f(z), )

Tret1 = YT + (1 — Vo) Yk

Figure 18: lllustration of Frank-Wolfe (conditional gradient) algorithm

18
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Convergence

R /— min

Frank-Wolfe Method
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Comparison to PGD

R fomin o Wolfe Method

20
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