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Constrained optimization

Unconstrained optimization

min f(z)

TERM

® Any point zo € R" is feasible and could be a
solution.

‘f - Wy‘l} Conditional methods
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
min f(z) min f(z)
® Any point zo € R" is feasible and could be a ® Not all z € R" are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
TER" 1) xS @)
® Any point zo € R" is feasible and could be a ® Not all z € R" are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 Izl <1
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
TER" 1) xS @)
® Any point zo € R" is feasible and could be a ® Not all z € R" are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 Izl <1
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
zeR”f( ) xS @)
® Any point zo € R" is feasible and could be a ® Not all z € R" are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:
1
~||Az — b||5 = min
2 lz3<1
Gradient Descent is a great way to solve unconstrained problem
The1 =k — ax V f(zk) (GD)

Is it possible to tune GD to fit constrained problem?
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(x min f(x
min f(z) min f(z)
® Any point zo € R" is feasible and could be a ® Not all z € R" are feasible and could be a solution.
solution. ® The solution has to be inside the set S.
® Example:

1
~||Az — b||5 = min
2 Izl <1

Gradient Descent is a great way to solve unconstrained problem
Try1 = Tk — iV f(2k) (GD)

Is it possible to tune GD to fit constrained problem?

Yes. We need to use projections to ensure feasibility on every iteration.
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w; )

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function
f(w;z)

® Typically, input x is given and network weights
w optimized

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w;z)

® Typically, input x is given and network weights

+ w optimized
® Could also freeze weights w and optimize x,
; 5 adversarially!
‘Duck’ X0.07 ‘Horse’ méin size(d) s.t. pred[f(w;z+8)]#y

or

m?xl(w;w—i—é, y) s.t.size(d) <€, 0<z+6 <1

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Idea of Projected Gradient Descent

Figure 2: Suppose, we start from a point .
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Idea of Projected Gradient Descent

S _vf(wk)

Figure 3: And go in the direction of —V f(zy).
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Idea of Projected Gradient Descent

yr = 2 — oV f(zg)

Figure 4: Occasionally, we can end up outside the feasible set.
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Idea of Projected Gradient Descent

Yk

Tr+1 = projs(yk)

Figure 5: Solve this little problem with projection!
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Idea of Projected Gradient Descent

Ye = Tk — oV f(xk)

ZTrp+1 = projg (zx — arV f(zy)) o ]
Trt1 = Projgs (k)

Y = xp — oV f(zr)

Tr1 = Projg(ye)

Figure 6: lllustration of Projected Gradient Descent algorithm
‘f - ;nylr; Conditional methods
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Projection

The distance d from point y € R" to closed set S C R™:

d(y; S| 1I) = nf{llz —y|| |z € S}

‘f - §ny1r; Projection
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Projection

The distance d from point y € R" to closed set S C R™:
Ay, S, I 1) = nf{[lz —y|| | = € S}
We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point

projs(y) € S:

. 1 .
projs(y) = iargnémllw —yll3
xXE

‘f%w‘; Projection 0 0
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Projection

The distance d from point y € R" to closed set S C R™:

d(y; S| 1I) = nf{llz —y|| |z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € S:

. 1 .
projs(y) = iarglgmllw —yll3
S

o Sufficient conditions of existence of a projection. If S C R™ - closed set, then the projection on set S exists
for any point.
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Projection

The distance d from point y € R" to closed set S C R™:

d(y; S| 1I) = nf{llz —y|| |z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € S:

. 1 .
projs(y) = gargnémllw —yll3
S

o Sufficient conditions of existence of a projection. If S C R™ - closed set, then the projection on set S exists
for any point.

e Sufficient conditions of uniqueness of a projection. If S C R" - closed convex set, then the projection on set
S is unique for any point.

lf%?“}‘i Projection 0 0
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Projection

The distance d from point y € R" to closed set S C R™:

d(y; S| 1I) = nf{llz —y|| |z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € S:

. 1 .
projs(y) = gargnémllw —yll3
S

o Sufficient conditions of existence of a projection. If S C R™ - closed set, then the projection on set S exists
for any point.

e Sufficient conditions of uniqueness of a projection. If S C R" - closed convex set, then the projection on set
S is unique for any point.

® |f a set is open, and a point is beyond this set, then its projection on this set does not exist.

lf%?“}‘i Projection 0 0
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Projection

The distance d from point y € R" to closed set S C R™:

d(y; S| 1I) = nf{llz —y|| |z € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € S:

. 1 .
projs(y) = gargnémllw —yll3
S

Sufficient conditions of existence of a projection. If S C R"™ - closed set, then the projection on set S exists
for any point.

Sufficient conditions of uniqueness of a projection. If S C R™ - closed convex set, then the projection on set
S is unique for any point.

If a set is open, and a point is beyond this set, then its projection on this set does not exist.

If a point is in set, then its projection is the point itself.

lf%?“}‘i Projection 0 0
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem
S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () .
Proof Projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of
optimality. y

Figure 7: Obtuse or straight angle should be
for any point z € S

‘f%wﬂ Projection 0 O 7
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem
S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () .
Proof Projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of

optimality. y
Vd(projg(y)) " (z — projs(y)) >0

Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem
S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () .
Proof Projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of

optimality. y
Vd(projg(y)) " (z — projs(y)) >0

2 (proj5(y) — y)T (x —projsg(y)) 20 Figure 7: Obtuse or straight angle should be
for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem
S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () .
Proof Projg (y)
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of

optimality. y
Vd(projg(y)) " (z — projs(y)) >

0
2 (proj5(y) — y)T (x —projsg(y)) 20 Figure 7: Obtuse or straight angle should be
. i for any point z € S
(y — projs ()" (z — projs(y)) < 0 yP
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () i(v)
Proof projsty
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of
optimality. y
Vd(projs(y)” (z — projg(y)) > 0
2 (proj5(y) — y)T (x —projsg(y)) 20 Figure 7: Obtuse or straight angle should be

. i for any point z € S
(y — projs(y))” (z — projs(y)) <0 yP

2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with
x =z — projg(y) and y = y — proj5(y). By the first property of the
theorem:

‘f%Wﬂ Projection 0 O 7
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () i(v)
Proof projsty
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of
optimality. y
Vd(projs(y)” (z — projg(y)) > 0
2 (proj5(y) — y)T (x —projsg(y)) 20 Figure 7: Obtuse or straight angle should be

. i for any point z € S
(y = projs (¥)" (z — projs(y)) < 0 P
2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with

x =z — projg(y) and y = y — proj5(y). By the first property of the

theorem:

2
I

0> 22"y = ||z — projs(y)|I> + Ily + projs (v)[|*> — ||z — y|?

‘f%Wﬂ Projection 0 O 7
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

i Theorem S
Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projs(y), x — projs(y)) <0 1) &
llz = projs (1)1 + [ly — projs () I* < [l — y|? () i(v)
Proof projsty
1. projg(y) is minimizer of differentiable convex function
d(y, S, || - II) = |l — y||? over S. By first-order characterization of
optimality. y
Vd(projs(y)” (z — projg(y)) > 0
2 (proj5(y) — y)T (x —projsg(y)) 20 Figure 7: Obtuse or straight angle should be

(y — projs(y))T (& — projg(y)) < 0 for any point z € S
2. Use cosine rule 22Ty = ||z||2 + ||ly||? — ||z — y||? with

x =z — projg(y) and y = y — proj5(y). By the first property of the

theorem:
T, _ : 2 : 2 2
02>2z"y = |z —projs () II” + lly + projs (W)II” — llz — vll

llz = projs ()11 + Ily + projs (W)II* < llz — ylI?

‘f%Wﬂ Projection 0 O 7
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
[f(z) = FWIl < Llz = yll, where L < 1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

!Non-expansive becomes contractive if L < 1.
lf%ﬁ}‘i Projection 0 0
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
[f(z) = FWIl < Llz = yll, where L < 1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:

l[proj(z) — proj(y)l2 < [lz — yll2.

!Non-expansive becomes contractive if L < 1.
lf%ﬁ}‘i Projection 0 0
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Projection operator is non-expansive

e A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom ,
[f(z) = FWIl < Llz = yll, where L < 1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:
lIproj(z) — proj(y)ll2 < [l — yll2
® Next: variational characterization implies non-expansiveness. i.e.,

(y —proj(y),z —proj(y)) <0 VeeS = |proj(z) — proj(y)ll2 < [l — yll2.

!Non-expansive becomes contractive if L < 1.
‘f - fnﬂ Projection
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Projection operator is non-expansive

Shorthand notation: let # = proj and 7 (z) denotes proj(z).

‘f - ?qyu} Projection
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Projection operator is non-expansive

Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—7(y),z—7(y) <0 VzeS. (3

‘f%;nylr; Projection 0 0
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Projection operator is non-expansive

Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality
(y=—m(y),z—7(y) <0 Vzes. 3)
Replace x by 7(x) in Equation 3

(y =m(y), m(z) —7w(y)) <0. (4)

lf%ﬁ}‘i Projection 0 0
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Projection operator is non-expansive

Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—m(y),z—7(y) <0 Vzes.
Replace x by w(z) in Equation 3 Replace y by  and x by w(y) in Equation 3

(y = m(y),m(z) —m(y)) < 0. (4) (x — w(z), 7(y) — m(x)) <O0.

‘f - §“}‘§ Projection

®3)
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Projection operator is non-expansive

Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y=m(y),z—7(y) <0 Vzes ®3)
Replace x by w(z) in Equation 3 Replace y by  and x by w(y) in Equation 3
(y—7(y),n(z) —n(y)) <0. (4) (x — 7(z), 7(y) — w(z)) < 0. (5)

(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives

(r(z) =, m(x) - 7(y)) <O. (6)

lf%ﬁ}‘i Projection 00 O 9
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Projection operator is non-expansive
Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality
(y—m(y),z—7(y) <0 Vzes.
Replace x by w(z) in Equation 3 Replace y by  and x by w(y) in Equation 3
(y =m(y), m(z) —7w(y)) <0. (4) (x — m(x), 7 (y) — (x)) < 0.
(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives

(r(z) = z,m(z) —7(y)) < 0.

(y=m(y) +7(x) — 2, 7(z) —n(y)) <0
(y =z +7(x) —7(y),m(z) —m(y)) <0
-z, m(@) —n(y)) < —(r(x) —7(y), 7(z) — 7 (y))
{y —a,m(y) —n(2)) > |In(x) — 7 (y)Il3
Iy =) (r(y) = 7(@))ll2 > |Iw(2) — = (y)lI3

‘f - §“}‘§ Projection

®3)

(6)
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Projection operator is non-expansive
Shorthand notation: let m = proj and 7(x) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y=m(y),z—7(y) <0 Vzes ®3)
Replace x by w(z) in Equation 3 Replace y by  and x by w(y) in Equation 3
(y—7(y),n(z) —n(y)) <0. (4) (x — 7(z), 7(y) — w(z)) < 0. (5)

(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives
(m(z) —z,7(x) —7(y)) <0 (6)

By Cauchy-Schwarz inequality, the

(y—m(y) +m(z) —z,m(z) —7(y)) <0 left-hand-side is upper bounded by
(y — x4 n(x) — 7(y), 7 (x) — w(y)) <0 lly — |2l (y) — 7 (z)]||2, we get
ly — zll2ll7(y) — 7(@)ll2 > I7(x) — 7 (y)]3.
(=2, m(@) =mly)) < ~(r(@) = 7(y), (@) =7 (y)) Cyancels ||7T(:Ey) — 7(y)||2 finishes the prc:>gof.
{y —a,m(y) —m(2)) > |[7(z) — w(y)lI3
Iy = )" (w(y) = 7())l|2 > |7 (z) = 7(y)I3

‘fﬁ}fnﬂ Projection 0 O 9


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: projection on the ball
Find ms(y) =7, if S={z € R" | [z —xo]| <R}, y ¢ S

‘f - i Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

‘f - ;nylr; Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

Check the inequality for a convex closed set: (7 — )% (z —7) >0

‘f - ;nylr; Projection
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Build a hypothesis from the figure: 7 =29+ R - ﬁ

Check the inequality for a convex closed set: (7 — )% (z —7) >0

T
(xo_“Ry—xo) (x_mO_Ry—xo>
ly — ol lly — ol

<(y —z0)(R—ly —«’B0|I))T ((«’B — @o)|ly — ol — R(y — w0)>

ly — ol| ly — ol
R_Hy—ﬂio” T .
[y — o2 (y —0)” ((x — o) [ly — zol| = R(y — o)) =
R —|ly — x| T
L0 (g — — 20) — Rlly — -
o —aall (720" (@ = 20) = Rlly = o)

(R — |ly — o) <(y_mo)(fc_x°) R>

lly — ol

‘f i Projection


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Yy—xo
lly—=oll

Check the inequality for a convex closed set: (7 — )% (z —7) >0
— Xo — R Y

- Yy — o ’ . — Zo
(“ “Rny—xou) ( ||y—xo|>
<<y—xo>(R— |y—xo||>)T ((w — wo)lly — zol] —R(y—m)

ly — ol| ly — ol

Build a hypothesis from the figure: 7 =29+ R -

w (y*xo)T((;p —z0) |ly — zo|| — R (y — z0)) =
w -z Tm—xo - — xol|) =
o (=20 @ 20) = Rlly ~ ll)
(R~ ol (LR o) )

‘f — min
e

Projection

The first factor is negative for point selection
y. The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:
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Example: projection on the ball
Find ns(y) ==, if S={x e R" | [z —xz0o|| <R}, y ¢ S

Yy—xo
lly—=oll

Check the inequality for a convex closed set: (7 — )% (z —7) >0
— Xo — R Y

- Yy — o ’ . — Zo
(“ “Rny—xou) ( ||y—xo|>
<<y—xo>(R— |y—xo||>)T ((w — wo)lly — zol] —R(y—m)

ly — ol| ly — ol

Build a hypothesis from the figure: 7 =29+ R -

w (y*xo)T((;p —z0) |ly — zo|| — R (y — z0)) =
w -z Tm—xo - — xol|) =
o (=20 @ 20) = Rlly ~ ll)
(R~ ol (LR o) )

‘f — min
e

Projection

The first factor is negative for point selection
y. The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:

(y — w0)" (z — z0) < |ly — wol|l|lz — ol
(y — z0)" (x — x0)

ly — zolll|lz — xol|
lly — ol

ly — ol

—R<
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Example: projection on the halfspace

Find ms(y) =, if S={z € R" | "2 = b}, y ¢ S. Build a hypothesis from the figure: ™ = y + ac. Coefficient o
is chosen so that 7 € S: ¢T'm = b, so:

‘f%;nylr; Projection D0 O 11
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Example: projection on the halfspace

Find ms(y) =, if S={z € R" | "2 = b}, y ¢ S. Build a hypothesis from the figure: ™ = y + ac. Coefficient o
is chosen so that 7 € S: ¢T'm = b, so:

cTe=b

Figure 9: Hyperplane

‘f%?ﬂy‘rﬁ Projection D0 O 11
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Example: projection on the halfspace

Find ms(y) =, if S={z € R" | "2 = b}, y ¢ S. Build a hypothesis from the figure: ™ = y + ac. Coefficient o
is chosen so that 7 € S: ¢T'm = b, so:

T

cx=">b y+ac)=b
.y cTy—|—ochc:b

o T T

. cy=b—ac c

Check the inequality for a convex closed set:
(m=y)"(@—m) =0

(y+ac—y) " (z—y—ac) =
ac’(z—y —ac) =

alc"z) —alc"y) — a?(c"e) =

Figure 9: Hyperplane

ab—ab—ac’c) —a’cle=

ab—ab+a?cfe—a?cfe =0 >0

lf%ﬁ}‘i Projection 0 O 11
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Idea

‘f — min
Tz

Yk = Tk — ox V f(2k)

ZTrp+1 = projg (zx — arV f(zy)) & )
Tt1 = projg (k)

yr = 2 — oV f(zg)

Tr+1 = projs(y)

Figure 10: lllustration of Projected Gradient Descent algorithm
Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

o o Lllmo —a"I3

flxg) — 7 < o

‘f - ﬁ}‘i Projected Gradient Descent (PGD) 0 O
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Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

« _ Lllzo — x*H%
— < 4 - 2
flzr) — 7 < o
Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = x5 — %Vf(mk) and cosine rule
227y = |lz|* + [lylI* — |z — yII*:

‘f - 5“.}‘; Projected Gradient Descent (PGD) D0 O 13
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Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

o o Lllmo —a"I3

flxg) — 7 < o

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = x5 — %Vf(mk) and cosine rule
227y = |lz|* + [lylI* — |z — yII*:

L
Smoothness:  f(zk+1) < f(zk) + (Vf(xk), Tht1 — zk) + §\|xk+1 - xk|\2

‘f - 5“.}‘; Projected Gradient Descent (PGD) D0 O 13
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Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

o o Lllmo —a"I3

flxg) — 7 < o

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = x5 — %Vf(mk) and cosine rule
227y = |lz|* + [lylI* — |z — yII*:

L
Smoothness:  f(zk+1) < f(zk) + (Vf(xk), Tht1 — zk) + §\|xk+1 - xk|\2

L
Method: = f(zx) — L{yxr — Tk, Tp+1 — =) + §ka+1 - gr:;€||2

‘f - 5“.}‘; Projected Gradient Descent (PGD) 0 O 13


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

o o Lllmo —a"I3

flxg) — 7 < o

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = x5 — %Vf(mk) and cosine rule
227y = |lz|* + [lylI* — |z — yII*:

L
Smoothness:  f(zk+1) < f(zk) + (Vf(xk), Tht1 — zk) + §\|xk+1 —a|?
L
Method: = f(zx) — L{yxr — Tk, Tp+1 — =) + §ka+1 - gr:;€||2

. L L
Cosine rule: = f(on) = 5 (o = el + lwss = ell® = g = wsa]2) + 5 lass — 2l ()

‘f - 5“.}‘; Projected Gradient Descent (PGD) 0 O 13
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Convergence rate for smooth and convex case

i Theorem
Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is

a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected

Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k£ > 0:

o o Lllmo —a"I3

flxg) — 7 < o

Proof

1. Let's prove sufficient decrease lemma, assuming, that y, = x5 — %Vf(mk) and cosine rule
227y = |lz|* + [lylI* — |z — yII*:

L
Smoothness:  f(zk+1) < f(zk) + (Vf(xk), Tht1 — zk) + §\|xk+1 - xk|\2
L
Method: = f(zx) — L{yxr — Tk, Tp+1 — =) + §ka+1 - gr:;€||2
. L L
Cosine rule: = f(on) = 5 (o = el + lwss = ell® = g = wsa]2) + 5 loss — 2l ()

1 L
= (o) = Sz IV @o)” + 5 e — ol

‘f - 5“.}‘; Projected Gradient Descent (PGD) 0 O 13
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:
(39, m =) = 3 (ZIVF@OI + o — 2| = llox — 2" = 29|
17 Te), T — 2 ) =5 | 12 Tk Tk — T Tp — T i3 Ty

* L1 . *
(Vf@i)an—a) = 5 (L IV @I + o =21 = Iy — "))

‘f - ;nylr; Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:
(39, m =) = 3 (ZIVF@OI + o — 2| = llox — 2" = 29|
17 Te), T — 2 ) =5 | 12 Tk Tk — T Tp — T i3 Ty

* L1 . *
(Vf@i)an—a) = 5 (L IV @I + o =21 = Iy — "))

3. We will use now projection property: |z — projg(y)||> + ||y — projs ()|1* < ||z — y||* with z = 2™,y = yx:

ll* — projg (ye)l|* + lyx — projs(yi) I < llz* — yxll®

lye = 21I* 2 lle” = ziral® + llye — zasa |

‘f - §ny1r; Projected Gradient Descent (PGD) 0 O
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Convergence rate for smooth and convex case

2. Now we do not immediately have progress at each step. Let's use again cosine rule:
(39, m =) = 3 (ZIVF@OI + o — 2| = llox — 2" = 29|
17 Te), T — 2 ) =5 | 12 Tk Tk — T Tp — T i3 Ty

L 1 * *
3 (L IVI@OIP + llow =271 = llge — ")

(Vf(z), zp — ")
3. We will use now projection property: |z — projg(y)||> + ||y — projs ()|1* < ||z — y||* with z = 2™,y = yx:

ll* — projg (ye)l|* + lyx — projs(yi) I < llz* — yxll®

lye = 21I* 2 lle” = ziral® + llye — zasa |

4. Now, using convexity and previous part:

Convexity: flze) — 7 <AV f(zk),zx — ")
L * *
< 2 (HIVF@I +llan — "2 = llzwss — o = g — e )
k—1 k—1 L L 1—1
Sumfori=0k—1 > [f(z:) Z—nw 2l + G lleo ="l = 5 llyi = @i
i=0 i=0 i=0

‘f - §ny1r; Projected Gradient Descent (PGD) D0 O 14
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Convergence rate for smooth and convex case

5. Bound gradients with sufficient decrease lemma 7:

k—1 k—1 i—1
* L L X L
S 1) = 1Y [f@0) = f@isn) + = zaall?] + Fllao =27l = 5 D g = @il
=0 1=0 1=0
L 2, L ae L 2
< flwo) = flaw) + 5 D i =zl + gllwo =217 =5 > llyi — @i
=0 =0
< (o) = f(ex) + 2llao — 2|
k—1
S $@s) = kf" < flmo) = flow) + gllao — o
=0
: L
> @) = 1 < Glleo — 2"

‘f - §ny1r; Projected Gradient Descent (PGD) 0 O
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Convergence rate for smooth and convex case

6. Let's show monotonic decrease of the iteration of the method.

‘f - fﬂyll} Projected Gradient Descent (PGD)
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Convergence rate for smooth and convex case

6. Let's show monotonic decrease of the iteration of the method.

7. And finalize the convergence bound.

‘f - ;nylr; Projected Gradient Descent (PGD)
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Idea

‘f — min
Y.z

Frank-Wolfe Method

Figure 11: lllustration of Frank-Wolfe (conditional gradient) algorithm

17


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea

‘f — min
Y.z

Frank-Wolfe Method

Figure 12: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /- min

Frank-Wolfe Method

Figure 13: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

‘f — min
Y.z

Frank-Wolfe Method

Figure 14: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /- min

Frank-Wolfe Method

Figure 15: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /- min

Frank-Wolfe Method

Figure 16: lllustration of Frank-Wolfe (conditional gradient) algorithm

17


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea

R /- min

Frank-Wolfe Method

Figure 17: lllustration of Frank-Wolfe (conditional gradient) algorithm

17
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Idea

R /- min

Frank-Wolfe Method

_ Y _ .
ye = argmin f;, (z) = argmin(V f(z), )

Tret1 = YT + (1 — Vo) Yk

Figure 18: lllustration of Frank-Wolfe (conditional gradient) algorithm

18
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Convergence (1/2)

Consider the problem
f(z) — min,
zeS

where f is convex and L-smooth. The Frank-Wolfe method is given by:

)

ZTr+1 = YTk + (1 — Y) Sk
sk = argmin f7, (z) = argmin (V f(zx), )
z€S z€eS

where fgfk (z) is the first-order Taylor approximation at the point zx. For vy, = Z—_T_} it holds that

flaw) - 1) < 2

where R = max ||z — y||. Thus, we have sublinear convergence.
z,yE€S

R S=omin o Wolfe Method


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence (2/2)

L-smoothness: 7
F@) = f) = (VW) — ) < Gllz —ul’, VayeS

orn) = F (@) < (VS @) onpn =)+ 5 lons — o

L1 —)*

2
3 llsk — zkll

=1 =) (VS (k) , s — 28) +

Convexity:
f@) = fy) = (Vi)z—y) 20 Ve,yeS= z:=z"y:=ac=> (Vf(ar), 2" —ax) < f(@") - f(zx)
L(1—y)? » LR?
2 2

farn) = F(@7) <y (fxe) = f(27) + (1 =)

R* < (1— ) (f(") = flax)) + (1 =)

> LR?
2

F(@rs1) = f(zr) < (=) (VS (zr) , 2" — 2x) +

_ f@e)—f(=")

Denote 6 = TRz . Then the inequality can be rewritten as

1—v)? k-1 2
= b .
2 PSRN e

applying induction on k yields the desired result.

Okt1 < YOk +

Starting from the inequality d2 < 3,

R S=omin o Wolfe Method @00 2
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