Newton method. Quasi-Newton methods

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

A Consider the function ¢(z) : R — R.

Slope ¢'(z)

éw(flﬁk)

Y

Lr+1 Tk

‘f - fnﬂ Newton method @ 0O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

A

Slope ¢'(z)

p(Tk)

Y

Lk+1 Tk

‘f% 5“}‘; Newton method @0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

A

w(xr)

/
Tr) =
© (k) P—

Slope ¢'(z)

p(Tk)

Y

Lk+1 Tk

‘f% 5“}‘; Newton method @0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

A

w(xr)

/
Tr) =
© (k) P—

Slope ¢'(z)

We get an iterative scheme:

p(Tk)

Y

Lk+1 Tk

‘f% 5“}‘; Newton method @0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

A

w(xr)

/
Tr) =
© (k) P—

Slope ¢'(z)

We get an iterative scheme:

o(wk)
@' (k)

Tk+1 = Tk —

p(Tk)

Y

Lk+1 Tk

‘f% 5“}‘; Newton method @0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

A Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

w(xr)

/
Tr) =
© (k) P—

Slope ¢'(z)

We get an iterative scheme:

par)
(T) @' (zx)
(P k Which will become a Newton optimization

a

method in case f'(z) = p(x):

Tk+1 = Tk —

Y

Lk+1 Tk

‘f - EHA}‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Idea of Newton method of root finding

A

\

Slope ¢'(z)

p(Tk)

Y

‘f — min
Tz

Newton method

Lk+1 Tk

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x and find its
root, which will be the new iteration point:

’ Qp(xk)
xT = —--
© (k) P—
We get an iterative scheme:

par)
¢ (wr)
Which will become a Newton optimization

a

method in case f'(z) = p(x):

Tk+1 = Tk —

Thir =k — [V f (k)] TV ()

“Literally we aim to solve the problem of finding
stationary points V f(z) = 0

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

‘f%ﬂig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

(@) = f(xr) + (V (k) — o) + %(va(xk)(x — Tg), T — T).

‘f%ﬂig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

(@) = f(xr) + (V (k) — o) + %(va(xk)(x — Tg), T — T).

The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
(@) = f(@r) + (V (@), z —zp) + §<V2f(96k)(2j — k), T — Tk).
The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

Vi (@re1) = V(zr) + V2 f(2) (@esr — ax) =0

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
(@) = f(@r) + (V (@), z —zp) + §<V2f(96k)(2j — k), T — Tk).
The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

Vfii($k+1) =V f(zk)+ V2f(ka)(l'k+1 —z) =0
VQf(l'k;)(karl —) = =V f(xr)

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
we (@) = f(@e) +(Vf(mn) 2 = @) + 5 (VI (@) (@ = @)@ = an).
The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

Vi (@re1) = V(zr) + V2 f(2) (@esr — ax) =0
V2 f(or) (@hs1 — 2k) = =V f (k)
[VQf(xk)] ! V2f(-rk)($k+l —xK) = — [VQf(xk)] ! Vf(zk)

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
i (@) = flon) + (VS (an), @ —) + 5 (V2 flan) (@ — o), @ — z).
The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

Vi (@re1) = V(zr) + V2 f(2) (@esr — ax) =0
V2f($k)($k+1 —x) = =V f(zg)
[VQf(SEk)] - V2 f(xr)(@hir — xn) = — [VQf(xk)] - Vf(zr)
T+l = Tk — [V2f(mk)] - Vf(zk).

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
i (@) = flon) + (VS (an), @ —) + 5 (V2 flan) (@ — o), @ — z).
The idea of the method is to find the point zj41, that minimizes the function f;’;(m) i.e. Vfgfi(xkﬂ) =0.

Vi (@re1) = V(zr) + V2 f(2) (@esr — ax) =0
V2f($k)($k+1 —x) = =V f(zg)
[VQf(SEk)] - V2 f(xr)(@hir — xn) = — [VQf(xk)] - Vf(zr)
T+l = Tk — [V2f(mk)] - Vf(zk).

‘f%mig Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
(@) = f(@r) + (V (@), z —zp) + §<V2f($k)(x — k), T — Tk).
The idea of the method is to find the point zj41, that minimizes the function fié(m) i.e. Vfgfi(xkﬂ) =0.

Vi (@re1) = V(zr) + V2 f(2) (@esr — ax) =0
V2f($k)($k+1 —x) = =V f(zg)
(V2 f(xx)] UV (k) (T — T) = — (V2 f(xx)] V()
T+l = Tk — [sz(a:k)} - Vf(zk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

lfﬂ“‘}‘i Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

f(z)

‘f - ;nylr; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

‘f — min Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

0 Lr+1 Lk

‘f - ?qyu} Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

f(z)

0 Lr+1

‘f - ;nylr; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

f(z)

0 Lr+1

‘f - ?qyu} Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

f(z)

4

0 Lhk+2 Lkt1

‘f - Wy‘l} Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

‘f% 5“3‘; Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem
Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally

converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

Proof

‘f% 5“3‘; Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

Vier) - V() = / V2 (@t 4 r(an — o)) (k- 2)dr
0

L mi
‘ / 5“;‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

Vier) - V() = / V2 (@t 4 r(an — o)) (k- 2)dr
0

2. Then we track the distance to the solution

L mi
‘ ! 5“;‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

Vier) - V() = / V2 (@t 4 r(an — o)) (k- 2)dr
0

2. Then we track the distance to the solution

Tpp1 — T =) — [V2f(xk)]71 Vi(wy) —z" =xp — 2" — [V2f(mk)]71 Vf(zk) =

L mi
‘ ! 5“;‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(x) < LI,. Then Newton's method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to z* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

Vier) - V() = / V2 (@t 4 r(an — o)) (k- 2)dr
0

2. Then we track the distance to the solution

Tpp1 — T =) — [V2f(xk)]71 Vi(wy) —z" =xp — 2" — [V2f(mk)]71 Vf(zk) =

=ap — " — [VQf(:vk)]il/ Vif(z" +71(xk — 2%))(xp — ¥)dr

0

L mi
‘ / 5“;‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

- (f — [V)] / VEf(a" + (e - x*))dT) (ar —a") =

0

‘f - fﬂyll} Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

- (f — [V)] / VEf(a" + (e - x*))df) (ar —a") =

0

= [VQf(l’k)] - <V2f($k) - / V2 f(x* +7(xh — m*))dr) (zp —z*) =

‘f - ;nylr; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

= (f — [V f ()] / V2 f(a" + T(en - x*))ch) (wr —a*) =
= [V /()] <V2f(a:k) - / VA f(@" + (e — w*))dr) (@x ") =

= [V ()] (/ (V2f () = V2 f (" + r(ax w*))dr)) (ax — ") =

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

= (f — [V f ()] / V2 f(a" + T(en - x*))ch) (wr —a*) =
= [V /()] <V2f(a:k) - / VA f(@" + (e — w*))dr) (@x ") =

= [V ()] (/ (V2f () = V2 f (" + r(ax w*))dr)) (ax — ") =

= [V f(ar)] " Gulzx — a*)

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

= (f — [V f ()] / V2 f(a" + T(en - x*))ch) (wr —a*) =
= [V /()] <V2f(a:k) - / VA f(@" + (e — w*))dr) (@x ") =

= [V f ()] (/ (V2 (k) = V2 f (" + (o — w*))dr)) (zh — ") =
= [V f(ar)] " Gulzx — a*)

4. We have introduced:

Gr = / (V2 f(zk) = V2 f(a" + 7(zk — 27))dr) .

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

5. Let's try to estimate the size of Gy:

where r, = ||z — z”|].

‘f - ;nylr; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

5. Let's try to estimate the size of Gy:

|Gkl = ’ / (VQf(mk) — V2 f(z" + 7(xy — ﬂc*))dT) <

where 7, = ||z — z*||.

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

5. Let's try to estimate the size of Gy:

|Gk||:’ / (V2 f(ak) = V(@ + (2 — 27))dr) || <

1
< / HVQf(xk) — V(" 4 T(zn — x*))H dr < (Hessian's Lipschitz continuity)
0

where 7, = ||z — z*||.

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

5. Let's try to estimate the size of Gy:

|Gk||:’ / (V2 f(ak) = V(@ + (2 — 27))dr) || <

1
< / HVQf(xk) — V(" 4 T(zn — x*))H dr < (Hessian's Lipschitz continuity)
0

Tk Af
b

1 1
< / MHwk—a:*—T(xk—x*)HdT:/ M|z — z"||(1 — 7)dT = 5
0 0

where 7, = ||z — z*||.

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence

5. Let's try to estimate the size of Gy:

|Gk||:’ / (V2 f(ak) = V(@ + (2 — 27))dr) || <

1
< / HVQf(xk) — V(" 4 T(zn — x*))H dr < (Hessian's Lipschitz continuity)
0

Lyys
2

1 1
< / Mz — 2" — 7(z — 2")||dT = / M|z — z"||(1 — 7)dT =
0 0
where 7, = ||z — z*||.
6. So, we have:

[V f(a)]

and we need to bound the norm of the inverse hessian

Moy

Tl < ‘

 mi
‘f §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:

‘f - Pay"; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:

V2 f(xr) — Vif(z") = —Mri I,

‘f - Pay"; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:

V2 f(zr) = V2 f(a") = —Mryly,
V2 f(xg) = Vif(z*) — MryI,

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:
V2 f(xr) — Vif(z") = —Mri I,
V2 far) = V2 f(a*) — MriI,
V2 f(xn) = pln = Mrily,

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:
V2 f(xr) — Vif(z") = —Mri I,
V2 f(xg) = Vif(z*) — MryI,
V2 f(ak) = pln — Mril,
V2 f(wr) = (= Mri) I,

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:

V2 f(xr) — Vif(z") = —Mri I,
V2 f(xg) = Vif(z*) — MryI,
V2 f(xr) = pln — MryI,

V2 f(wr) = (= Mri) I,

Convexity implies V? f(2x) > 0, i.e. 7 < 4.
|72 w) ™| < = any

2
'I"kM

< 'k

et = 2(p — Mry)

 mi
‘f §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:
V2 f(xr) — Vif(z") = —Mri I,
V2 f(zr) = V2 f(a") — Mril,
V2 f(ak) = pln — Mril,
V2 f(xn) = (p = Mri) I

Convexity implies V? f(2x) > 0, i.e. 7 < 4.
|07 Y < o= 2y

2
TkM
Tht1 < o7
2(p — Mry)
8. The convergence condition 1,41 < 1, imposes additional conditions on 7, : 7 < 32—]\"4

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian
converges quadratically near ([|lzo — z*|| < &) to the solution.

‘f% 5“.}‘; Newton method 0 O 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Affine Invariance of Newton’'s Method

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix
A€ R™", let x = Ay, and define g(y) = f(Ay). Note, that Vg(y) = ATV f(z) and V3g(y) = ATV?f(2)A. The
Newton steps on g are expressed as:

yesr =k — (V29(u)) ' Vo)

lfﬂ“‘}‘i Newton method 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Affine Invariance of Newton’'s Method

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix

A €R™", let z = Ay, and define g(y) = f(Ay). Note, that Vg(y) = ATV f(x) and V3g(y) = ATV?f(2)A. The
Newton steps on g are expressed as:

-1
ykrr =k — (V2g(r)) Valyr)
Expanding this, we get:

Yo = i — (ATV2(Ay)A) ATV f(Ays)

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Affine Invariance of Newton’'s Method

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix

A €R™", let z = Ay, and define g(y) = f(Ay). Note, that Vg(y) = ATV f(x) and V3g(y) = ATV?f(2)A. The
Newton steps on g are expressed as:

yesr =k — (V29(u)) ' Vo)

Expanding this, we get:
-1
Y1 = ye — (ATV2F(Ayr)A) ATV f(Ayx)

Using the property of matrix inverse (AB)™" = B™'A™!, this simplifies to:

e =y — AT (V2 (Aye)) ' VI (Agr)
Ayp+1 = Ayr — (ng(A?/k))71 Vf(Ayr)

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Affine Invariance of Newton’'s Method

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix

A €R™", let z = Ay, and define g(y) = f(Ay). Note, that Vg(y) = ATV f(x) and V3g(y) = ATV?f(2)A. The
Newton steps on g are expressed as:

yesr =k — (V29(u)) ' Vo)

Expanding this, we get:
-1
Y1 = ye — (ATV2F(Ayr)A) ATV f(Ayx)

Using the property of matrix inverse (AB)™" = B™'A™!, this simplifies to:

e =y — AT (V2 (Aye)) ' VI (Agr)
Ayp+1 = Ayr — (ng(AykDil Vf(Ayr)

Thus, the update rule for x is:
-1
wper =k — (V2f(2r)) " V(k)

‘f - fnﬂ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Affine Invariance of Newton’'s Method

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix
A€ R™", let x = Ay, and define g(y) = f(Ay). Note, that Vg(y) = ATV f(z) and V3g(y) = ATV?f(2)A. The

Newton steps on g are expressed as:
-1
yrr1 =k — (Vi)™ Valyr)

Expanding this, we get:
-1
Y1 = ye — (ATV2F(Ayr)A) ATV f(Ayx)

Using the property of matrix inverse (AB)™" = B™'A™!, this simplifies to:
_ —1
yrir = ye — AT (V2 f(Aur)) VI (Agr)
-1
Ayi1 = Ay — (V2 F(Ayr)) VI (Ayr)

Thus, the update rule for x is:
-1
wper =k — (V2f(2r)) " V(k)

This shows that the progress made by Newton's method is independent of problem scaling. This property is not

shared by the gradient descent method!

‘f - fnﬂ Newton method

P

O O

9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n?) memory

‘f - fnﬂ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n
® it is necessary to solve linear systems: O(n?) operations

‘f - EHA}‘; Newton method

%) memory

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n
® it is necessary to solve linear systems O(n®) operations
® the Hessian can be degenerate at =~

‘f - EHA}‘; Newton method

%) memory

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

it is necessary to solve linear systems O(n®) operations
the Hessian can be degenerate at x*
the hessian may not be positively determined — direction

L mi
‘ f 5“;‘; Newton method

it is necessary to store the (inverse) hessian on each iteration: O(n?*) memory

—(f"(z))"*f'(x) may not be a descending direction

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method problems

‘f g i Newton method

Figure 7: Animation Wt

https://github.com/MerkulovDaniil/optim/raw/master/assets/Notebooks/Newton_convergence.mp4
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Newton method problems

30 Quadratic approximation becomes inaccurate

—— Function V1+x2 -1

2.5 A ~~~ Taylor Approximation at xo
® Xo=-2.0

2.0 1

1.5 1

1.0 A

0.5 1

0.0 1

_0.5 -

-1.0 T T T T
-4 -3 -2 -1 0 1 2 3

Figure 8: Animation ll¢

‘f - i Newton method

https://fmin.xyz/docs/theory/inaccurate_taylor.mp4
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define
Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define
Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

T, T

‘f - §ny1r; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define
Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

" = argzelgei&o) f(z)

Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define
Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

" =arg min T
ngBE(zo) f()
Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

.zt —xo
s = lim ———
e—0 g

‘f - §“}‘§ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define
Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

" =arg min T
ngBE(zo) f()
Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

.zt —xo
s = lim ———
e—0 g

Let us assume that the distance is defined locally by some
metric A:

d(z,z0) = (z — 20) " A(x — x0)

‘f - Pﬂ;‘; Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define

Be(x0) = {x € R™ : d(z,z0) = €*} as the set of points
with distance ¢ to x¢. Here we presume the existence of a
distance function d(z, o).

" = argzegleigo) f(z)

Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

.zt —xo
s = lim
e—0 3
Let us assume that the distance is defined locally by some

metric A:
d(z,z0) = (z — 20) " A(x — x0)

Let us also consider first order Taylor approximation of a
function f(z) near the point zo:

fwo +82) = f(zo) + V f(z0) ' b2 (1)

‘f — min
e

Newton method

Now we can explicitly pose a problem of finding s, as it
was stated above.

min f(xo + 0x)
Sz ERX

st. 6z Adx = 2

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics

Given f(x) and a point zo. Define Now we can explicitly pose a problem of finding s, as it

Be(x0) = {x € R™ : d(z,z0) = €°} as the set of points was stated above.
w.ith distance 6 to xp. Here we presume the existence of a min f(zo + 5x)
distance function d(z, o). SxERX

. o f st. oz Adx = &2
¥ =arg min T
ngBE(zo) ()

Using equation (1 it can be written as:

Then, we can define another steepest descent direction in

S . . T
terms of minimizer of function on a sphere: min Vf(zo) bz
SxzeRX
* T 2
. T — Xo =
s = lim s.t. 6 Adr =¢
e—0 €

Let us assume that the distance is defined locally by some
metric A:

d(z,z0) = (z — 20) " A(x — x0)

Let us also consider first order Taylor approximation of a
function f(z) near the point zo:

fwo +82) = f(zo) + V f(z0) ' b2 (1)

‘f - fnﬂ Newton method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define Now we can explicitly pose a problem of finding s, as it
Be(x0) = {x € R™ : d(z,z0) = €°} as the set of points was stated above.
with distance ¢ to x¢. Here we presume the existence of a .
1)
distance function d(z, o). 5351?% f(@o + z)
i} . st. oz Adx = &2
" =arg min f(x)
zE€Bc (z

€Pelro) Using equation (1 it can be written as:
Then, we can define another steepest descent direction in

S . . T
terms of minimizer of function on a sphere: min Vf(zo) bz
SxzeRX
* T 2
. T — Xo =
s = lim s.t. 6 Adr =¢
e—0 €

Using Lagrange multipliers method, we can easily

Let us assume that the distance is defined locally by some .
conclude, that the answer is:

metric A:
T 2¢? -1
d(x, 0) = (x — x0) Az — x0) O G) T A)

Let us also consider first order Taylor approximation of a
function f(z) near the point zo:

fwo +82) = f(zo) + V f(z0) ' b2 (1)

‘f% Wﬁ Newton method 0 0

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point zo. Define Now we can explicitly pose a problem of finding s, as it
Be(x0) = {x € R™ : d(z,z0) = €°} as the set of points was stated above.
with distance ¢ to x¢. Here we presume the existence of a .

1)
distance function d(z, o). Mnél]}?x f(@o + dz)
. . st. 0z Adz = £
" =arg min f(x)

€B.
veBe(wo) Using equation (1 it can be written as:

Then, we can define another steepest descent direction in

S . . T
terms of minimizer of function on a sphere: min Vf(zo) bz
SxzeRX
* T 2
. T — Xo =
s = lim s.t. 6 Adr =¢
e—0 €

Using Lagrange multipliers method, we can easily

Let us assume that the distance is defined locally by some .
conclude, that the answer is:

metric A:
T 2¢? -1
d(x, 0) = (x — x0) Az — x0) O G) T A)

Let us also consider first order Taylor approximation of a

; . Which means, that new direction of steepest descent is
function f(z) near the point zo:

nothing else, but A~V f(zo).
flzo + 6z) ~ f(z0) + Vf(xo)T&v - Indeed, if the space is isotropic and A = I, we
immediately have gradient descent formula, while Newton
B S=min o ion method method uses local Hessian as a metric matrix.® © © 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:
T ER™

Th41 = Tk + ardy

R /=min o Newton methods 0 O 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:

T ER™

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton's direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

lf%ﬁ}‘i Quasi-Newton methods 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:

T ER™

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton's direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

‘f%w‘; Quasi-Newton methods 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:
T ER™

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton's direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of By = I,, as By at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bj matrix so that it tends in some
sense at k — oo to the truth value of the Hessian V2 f(z).

‘f% EHA}‘; Quasi-Newton methods 0 O 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:
1. Solve Brdr = —V f(xx)

‘f - ﬂ'.‘) Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update xx4+1 = xr + ardy

‘f - ﬂ'.‘) Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdy = —V f(zx)
2. Update Tk4+1 = Tk + ardy
3. Compute By+1 from By

‘f - ﬂ'.ri Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdy = —V f(zx)
2. Update Tk4+1 = Tk + ardy
3. Compute By+1 from By

‘f - ﬂ'.ri Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bj1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l

from (Bx)™".

‘f%?ﬂy‘rﬁ Quasi-Newton methods 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bj1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l

from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form Bj1.

lf%ﬁ}‘i Quasi-Newton methods 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form Bj1.

Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Bres1(Tht1 — 2x) = Brirde
Ayr = Bry1Axy,

‘f% fnﬂ Quasi-Newton methods D0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form Bj1.

Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Bres1(Tht1 — 2x) = Brirde
Ayr = Bry1Axy,

In addition to the secant equation, we want:

® Bi+1 to be symmetric

‘f% fnﬂ Quasi-Newton methods D0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form Bj1.
Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Bres1(Tht1 — 2x) = Brirde
Ayr = Bry1Axy,

In addition to the secant equation, we want:

® Bi+1 to be symmetric
® Bii1 to be “close” to By

‘f% fnﬂ Quasi-Newton methods D0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Quasi-Newton Method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Solve Brdr = —V f(xx)
2. Update Tk4+1 = Tk + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form Bj1.
Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Bres1(Tht1 — 2x) = Brirde
Ayr = Bry1Axy,

In addition to the secant equation, we want:

® Bi+1 to be symmetric
® Bii1 to be “close” to By
L4 Bk>-0:>Bk+1>-0

‘f% fnﬂ Quasi-Newton methods D0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Symmetric Rank-One Update

Let's try an update of the form:

— mi .
‘f ﬂ'.‘) Quasi-Newton methods

Bk+1 = Br + auuT

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Symmetric Rank-One Update

Let's try an update of the form:
Bk+1 = Br + auuT

The secant equation By 1dr = Ayy. yields:

(audy)u = Ayy — Brdy,

— mi .
‘f ﬂ'.ri Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Symmetric Rank-One Update
Let's try an update of the form:
Brt1 = B + auuT
The secant equation By 1dr = Ayy. yields:
(audy)u = Ayy — Brdy,

This only holds if u is a multiple of Ayx — Brdy. Putting u = Ayr — Brdy, we solve the above,

1

“= (Ayy — Brdy)Tdy’

‘f - §ny1r; Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Symmetric Rank-One Update

Let's try an update of the form:
Brt1 = B + auuT

The secant equation By 1dr = Ayy. yields:

(audy)u = Ayy — Brdy,

This only holds if u is a multiple of Ayx — Brdy. Putting u = Ayr — Brdy, we solve the above,

1
“= (Ayy — Brdy)Tdy’

which leads to ’
(Ayx — Brdi)(Ayx — Brds)

(Ayr — Brdy)Tds,

Byy1 = By +

called the symmetric rank-one (SR1) update or Broyden method.

— mi :
‘f fnﬂ Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Symmetric Rank-One Update with inverse

How can we solve
Bii1der1 = =V f(@ry1),

in order to take the next step? In addition to propagating By to Byy1, let's propagate inverses, i.e., C, = B,
Cry1 = (Brs1) .

Sherman-Morrison Formula:
The Sherman-Morrison formula states:

! to

_ _ AT AL
A Tyl _ g1 A U A
(A+ o) 1+0vTA- 1y
Thus, for the SR1 update, the inverse is also easily updated:

(di — CrAyy)(dy, — CrAyr)T
(dk — CkAyk)TAyk

Cry1=Cr +

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.

lf%ﬁ}‘i Quasi-Newton methods D0 O 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ciy1=Cr + auu® + bov®.

‘f - ﬂ'.ri Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ci1 = Cr + auu? + bovT.
Multiplying by Ay, using the secant equation di = CrAyg, and solving for a, b, yields:

Ayf CrAyr Ayldy,

Cr+1=Cr —

Woodbury Formula Application

Woodbury then shows:
Ayrd), di Ayi Ay Ayi
B =|1- Br | I —
ket (Ay,{dk k Ay,{dk + Aygdk

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: O(n?), preserves positive definiteness. Not as
popular as BFGS.

lf%ﬁ}‘i Quasi-Newton methods 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

Br+1 = B + avu® + bovT.

‘f - ﬂ'.‘) Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:
Br+1 = B + avu® + bovT.

The secant equation Ay, = Br41dy, yields:

Ay — Brdy = (aquk)u + (vadk)v

‘f - ﬂ'.ri Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:
Br+1 = B + avu® + bovT.

The secant equation Ay, = Br41dy, yields:

Ay — Brdy = (aquk)u + (vadk)v

Putting u = Ayk, v = Bidk, and solving for a, b we get:

Bkdkdsz AykAy?;

Biy1 = By —
M PR T T AT Brdy T Ayy,

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

‘f - §ny1r; Quasi-Newton methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula

The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A+UCV) ' =A"t—A'U(Cct+vatu)ytva!

‘f - ﬂ'.‘) Quasi-Newton methods

20

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A+UCV) ' =A"t—A'U(Cct+vatu)ytva!
Applied to our case, we get a rank-two update on the inverse C":

(di. — CrAyp)dE | di(di — CrAye)” (di — CrAye)T Ay,

Cry1=C, - dpdf
k+1 k+ Aydek + Ay,{dk (Aydek)Q kO
deAyL Aydy dpdF
Crp1=|1T—- Cp | I-
Rt (AyTdy,) " AyTd,) T AyTdy

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n?) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
By = 0= Bry1 > 0. Equivalently, Cx, > 0= Cry1 >0

lf%ﬁ}‘i Quasi-Newton methods 0 O 20

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Code

® QOpen In Colab

‘f - ﬂ'.ri Quasi-Newton methods

21

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Code

® QOpen In Colab
® Comparison of quasi Newton methods

‘f - §ny1r; Quasi-Newton methods

21

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Code

® QOpen In Colab
® Comparison of quasi Newton methods
® Some practical notes about Newton method

— mi :
‘f fnﬂ Quasi-Newton methods

21

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Newton method
	Quasi-Newton methods

