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Idea of Newton method of root finding
Consider the function φ(x) : R → R.

The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0
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Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).
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Newton method as a local quadratic Taylor approximation minimizer

Figure 1: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 3: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 4: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 5: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 6: Illustration
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Convergence
ñ Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

∇f(xk) − ∇f(x∗) =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

2. Then we track the distance to the solution

xk+1 − x∗ = xk −
[
∇2f(xk)

]−1 ∇f(xk) − x∗ = xk − x∗ −
[
∇2f(xk)

]−1 ∇f(xk) =

= xk − x∗ −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ
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4. We have introduced:
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Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Convergence
7. Because of Hessian’s Lipschitz continuity and symmetry:

∇2f(xk) − ∇2f(x∗) ⪰ −MrkIn

∇2f(xk) ⪰ ∇2f(x∗) − MrkIn

∇2f(xk) ⪰ µIn − MrkIn

∇2f(xk) ⪰ (µ − Mrk)In

Convexity implies ∇2f(xk) ≻ 0, i.e. rk < µ
M

.∥∥∥[
∇2f(xk)

]−1
∥∥∥ ≤ (µ − Mrk)−1

rk+1 ≤ r2
kM

2(µ − Mrk)

8. The convergence condition rk+1 < rk imposes additional conditions on rk : rk < 2µ
3M

Thus, we have an important result: Newton’s method for the function with Lipschitz positive-definite Hessian
converges quadratically near (∥x0 − x∗∥ < 2µ

3M
) to the solution.
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Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!
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Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction
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Newton method problems

Figure 7: Animation Å
Newton method v § } 11
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Newton method problems

Figure 8: Animation Å
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The idea of adapive metrics
Given f(x) and a point x0. Define
Bε(x0) = {x ∈ Rn : d(x, x0) = ε2} as the set of points
with distance ε to x0. Here we presume the existence of a
distance function d(x, x0).

x∗ = arg min
x∈Bε(x0)

f(x)

Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

s = lim
ε→0

x∗ − x0

ε

Let us assume that the distance is defined locally by some
metric A:

d(x, x0) = (x − x0)⊤A(x − x0)

Let us also consider first order Taylor approximation of a
function f(x) near the point x0:

f(x0 + δx) ≈ f(x0) + ∇f(x0)⊤δx (1)

Now we can explicitly pose a problem of finding s, as it
was stated above.

min
δx∈R⋉

f(x0 + δx)

s.t. δx⊤Aδx = ε2

Using equation ( 1 it can be written as:

min
δx∈R⋉

∇f(x0)⊤δx

s.t. δx⊤Aδx = ε2

Using Lagrange multipliers method, we can easily
conclude, that the answer is:

δx = − 2ε2

∇f(x0)⊤A−1∇f(x0)A−1∇f

Which means, that new direction of steepest descent is
nothing else, but A−1∇f(x0).
. . . Indeed, if the space is isotropic and A = I, we
immediately have gradient descent formula, while Newton
method uses local Hessian as a metric matrix.
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).

Quasi-Newton methods v § } 14
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Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)

2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0
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Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.
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Symmetric Rank-One Update with inverse

How can we solve
Bk+1dk+1 = −∇f(xk+1),

in order to take the next step? In addition to propagating Bk to Bk+1, let’s propagate inverses, i.e., Ck = B−1
k to

Ck+1 = (Bk+1)−1.

Sherman-Morrison Formula:
The Sherman-Morrison formula states:

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u

Thus, for the SR1 update, the inverse is also easily updated:

Ck+1 = Ck + (dk − Ck∆yk)(dk − Ck∆yk)T

(dk − Ck∆yk)T ∆yk

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.
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Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ck+1 = Ck + auuT + bvvT .

Multiplying by ∆yk, using the secant equation dk = Ck∆yk, and solving for a, b, yields:

Ck+1 = Ck − Ck∆yk∆yT
k Ck

∆yT
k Ck∆yk

+ dkdT
k

∆yT
k dk

Woodbury Formula Application
Woodbury then shows:

Bk+1 =
(

I − ∆ykdT
k

∆yT
k dk

)
Bk

(
I − dk∆yT

k

∆yT
k dk

)
+ ∆yk∆yT

k

∆yT
k dk

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: O(n2), preserves positive definiteness. Not as
popular as BFGS.
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Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

The secant equation ∆yk = Bk+1dk yields:

∆yk − Bkdk = (auT dk)u + (bvT dk)v

Putting u = ∆yk, v = Bkdk, and solving for a, b we get:

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
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Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on the inverse C:

Ck+1 = Ck + (dk − Ck∆yk)dT
k

∆yT
k dk

+ dk(dk − Ck∆yk)T

∆yT
k dk

− (dk − Ck∆yk)T ∆yk

(∆yT
k dk)2 dkdT

k

Ck+1 =
(

I − dk∆yT
k

∆yT
k dk

)
Ck

(
I − ∆ykdT

k

∆yT
k dk

)
+ dkdT

k

∆yT
k dk

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n2) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
Bk ≻ 0 ⇒ Bk+1 ≻ 0. Equivalently, Ck ≻ 0 ⇒ Ck+1 ≻ 0
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Code

• Open In Colab

• Comparison of quasi Newton methods
• Some practical notes about Newton method
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