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Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Convergence with constant α or line search.

• Iteration cost is linear in n. For ImageNet n ≈ 1.4 · 107, for WikiText n ≈ 108.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).
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Typical behaviour

Figure 1: “Divergence”
Stochastic Gradient Descent (SGD) v § } 4
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Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]
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Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .
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Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact that

δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.
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2µ2

which gives the stated rate.
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Convergence. Smooth PL case.
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8µ2(k + 1)4
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Convergence. Smooth PL case.

3. Constant step size: Choosing αk = α for any α < 1/2µ yields

E[f(xk+1) − f∗] ≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

k∑
i=0

(1 − 2αµ)i

≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

∞∑
i=0

(1 − 2αµ)i

= (1 − 2αµ)k[f(x0) − f∗] + Lσ2α

4µ
,

where the last line uses that α < 1/2µ and the limit of the geometric series.
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Convergence. Smooth non-convex case.
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Convergence. Convex case.
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Mini-batch SGD
Approach 1: Control the sample size
The deterministic method uses all n gradients:

∇f(xk) = 1
n

n∑
i=1

∇fi(xk).

The stochastic method approximates this using just 1 sample:

∇fik(xk) ≈ 1
n

n∑
i=1

∇fi(xk).

A common variant is to use a larger sample Bk (“mini-batch”):

1
|Bk|

∑
i∈Bk

∇fi(xk) ≈ 1
n

n∑
i=1

∇fi(xk),

particularly useful for vectorization and parallelization.
For example, with 16 cores set |Bk| = 16 and compute 16 gradients at once.
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Mini-Batching as Gradient Descent with Error

The SG method with a sample Bk (“mini-batch”) uses iterations:

xk+1 = xk − αk

(
1

|Bk|
∑
i∈Bk

∇fi(xk)

)
.

Let’s view this as a “gradient method with error”:

xk+1 = xk − αk(∇f(xk) + ek),

where ek is the difference between the approximate and true gradient.

If you use αk = 1
L

, then using the descent lemma, this algorithm has:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2,

for any error ek.
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Effect of Error on Convergence Rate

Our progress bound with αk = 1
L

and error in the gradient of ek is:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2.

Connection between “error-free” rate and “with error” rate:
• If the “error-free” rate is O( 1

k
), you maintain this rate if ∥ek∥2 = O( 1

k
).

• If the “error-free” rate is O(ρk), you maintain this rate if ∥ek∥2 = O(ρk).
If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.
So, to understand the effect of batch size, we need to know how |Bk| affects ∥ek∥2.
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Main problem of SGD

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn
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Strongly convex binary logistic regression. m=200, n=10, mu=1.
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Conclusions

• SGD with fixed learning rate does not converge even for PL (strongly convex) case

• SGD achieves sublinear convergence with rate O
(

1
k

)
for PL-case.

• Nesterov/Polyak accelerations do not improve convergence rate
• Two-phase Newton-like method achieves O

(
1
k

)
without strong convexity.
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