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Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.

• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).
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SGD with constant stepsize does not converge
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Main problem of SGD

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn
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Strongly convex binary logistic regression. m=200, n=10, mu=1.

SGD SGD batch 10 SGD batch 50 SGD batch 100 GD
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]

• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias

• If α < 1: potential bias (but reduced variance).
• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.

• E[Y ] = 1
n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;

• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y ) + E[Y ]

• E[Zα] = αE[X] + (1 − α)E[Y ]
• var(Zα) = α2 (var(X) + var(Y ) − 2cov(X, Y ))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y ] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average


︸ ︷︷ ︸

new table average
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SAG convergence

Assume that f(x) = 1
n

∑n

i=1 fi(x), where each fi is differentiable, and ∇fi is Lipschitz with constant L.

Denote x̄(k) = 1
k

∑k−1
l=0 x(l), the average iterate after k − 1 steps.

ñ Theorem

SAG, with a fixed step size α = 1
16L

, and the initialization

g
(0)
i = ∇fi(x(0)) − ∇f(x(0)), i = 1, . . . , n

satisfies
E[f(x̄(k))] − f⋆ ≤ 48n

k
[f(x(0)) − f⋆] + 128L

k
∥x(0) − x⋆∥2

where the expectation is taken over random choices of indices.
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SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.

• This is O
(

1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:

• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k

• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make
f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).
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SAG convergence

Assume further that each fi is strongly convex with parameter µ.

ñ Theorem

SAG, with a step size α = 1
16L

and the same initialization as before, satisfies

E[f(x(k))] − f⋆ ≤
(

1 − min
(

µ

16L
,

1
8n

))k (3
2
(
f(x(0)) − f⋆

)
+ 4L

n
∥x(0) − x⋆∥2

)
Notes:

• This is linear convergence rate O(γk) for SAG. Compare this to O(γk) for GD, and only O
(

1
k

)
for SGD.

• Like GD, we say SAG is adaptive to strong convexity.
• Proofs of these results not easy: 15 pages, computed-aided!
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SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.

• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations

• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for
SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.

• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0

• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations

• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for
SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


SAG non-uniform sampling
• The step size αk and the convergence rate of the method are determined by the constant L for f(x), where

L = max1≤i≤n Li, Li is the Lipschitz constant for the function fi

• When selecting components with a probability proportional to Li, the constant L can be reduced from maxi Li

to L̄ =
∑

i
Li/N :

g(x) = 1
n

n∑
i=1

fi(x)

= 1
n

n∑
i=1

Li∑
j=1

fi(x)
Li

= 1∑
k

Lk

n∑
i=1

Li∑
j=1

(∑
k

Lk

n

fi(x)
Li

)

With this approach, the component with a larger value of Li is selected more often.
• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,

select from a uniform distribution, with probability 0.5, select with probabilities Li/
∑

j
Lj .

• To generate with probabilities Li/
∑

j
Lj , there is an algorithm with complexity O(log N).
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Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs

• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1
n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j )2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.

• The learning rate of rare informative features diminishes slowly.
• Can drastically improve over SGD in sparse problems.
• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,

etc. improve on this, popular in training deep neural networks.
• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step

sizes.
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RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(k) = ∇fik (x(k−1)) and update rule
for j = 1, . . . , p:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j )2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for

that weight.

• Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.

• Commonly used in training neural networks, particularly in recurrent neural networks.
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Adadelta (Zeiler, 2012)
An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate α:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j )2

g̃
(k)
j =

√
∆x

(k−1)
j + ϵ√

v
(k)
j + ϵ

g
(k)
j

x
(k)
j = x

(k−1)
j − g̃

(k)
j

∆x
(k)
j = ρ∆x

(k−1)
j + (1 − ρ)(g̃(k)

j )2

Notes:
• Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all

past gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.

• The method does not require an initial learning rate setting, making it easier to configure.
• Often used in deep learning where parameter scales differ significantly across layers.
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Adam (Kingma and Ba, 2014)
Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

m
(k)
j = β1m

(k−1)
j + (1 − β1)g(k)

j

v
(k)
j = β2v

(k−1)
j + (1 − β2)(g(k)

j )2

m̂j =
m

(k)
j

1 − βk
1

, v̂j =
v

(k)
j

1 − βk
2

x
(k)
j = x

(k−1)
j − α

m̂j√
v̂j + ϵ

Notes:
• Adam is suitable for large datasets and high-dimensional optimization problems.

• It corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the
estimates more accurate.

• Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.
• However, the proposed algorithm in initial version does not converge even in convex setting (later fixes

appeared)
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Stochasticity allows to escape local minima
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Local divergence can also be benefitial
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