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Problem
Suppose, we have a problem of minimization of a function f(x) : R → R of scalar variable:

f(x) → min
x∈R

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

f(x) → min
x∈[a,b]

ñ Example

Typical example of line search problem is selecting appropriate stepsize for gradient descent algorithm:

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

The line search is a fundamental optimization problem that plays a crucial role in solving complex tasks. To simplify
the problem, let’s assume that the function, f(x), is unimodal, meaning it has a single peak or valley.
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Unimodal function

ñ Definition

Function f(x) is called unimodal on [a, b], if there is x∗ ∈ [a, b], that f(x1) > f(x2) ∀a ≤ x1 < x2 < x∗
and f(x1) < f(x2) ∀x∗ < x1 < x2 ≤ b

Figure 1: Examples of unimodal functions
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Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]

• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.
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Dichotomy method
We aim to solve the following problem:

f(x) → min
x∈[a,b]

We divide a segment into two equal parts and choose the
one that contains the solution of the problem using the
values of functions, based on the key property described
above. Our goal after one iteration of the method is to
halve the solution region.

Figure 2: Dichotomy method for unimodal function
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Dichotomy method
We measure the function value at the middle of the line
segment

Figure 3: Dichotomy method for unimodal function
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Dichotomy method
In order to apply the key property we perform another
measurement.

Figure 4: Dichotomy method for unimodal function
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Dichotomy method
We select the target line segment. And in this case we are
lucky since we already halved the solution region. But
that is not always the case.

Figure 5: Dichotomy method for unimodal function
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Dichotomy method
Let’s consider another unimodal function.

Figure 6: Dichotomy method for unimodal function
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Dichotomy method
Measure the middle of the line segment.

Figure 7: Dichotomy method for unimodal function
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Dichotomy method
Get another measurement.

Figure 8: Dichotomy method for unimodal function
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Dichotomy method
Select the target line segment. You can clearly see, that
the obtained line segment is not the half of the initial one.
It is 3

4 (b − a). So to fix it we need another step of the
algorithm.

Figure 9: Dichotomy method for unimodal function
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Dichotomy method
After another additional measurement, we will surely get
2
3

3
4 (b − a) = 1

2 (b − a)

Figure 10: Dichotomy method for unimodal function
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Dichotomy method
To sum it up, each subsequent iteration will require at
most two function value measurements.

Figure 11: Dichotomy method for unimodal function
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Dichotomy method. Algorithm

def binary_search(f, a, b, epsilon):
c = (a + b) / 2
while abs(b - a) > epsilon:

y = (a + c) / 2.0
if f(y) <= f(c):

b = c
c = y

else:
z = (b + c) / 2.0
if f(c) <= f(z):

a = y
b = z

else:
a = c
c = z

return c
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Dichotomy method. Bounds
The length of the line segment on k + 1-th iteration:

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration xk+1:

|xk+1 − x∗| ≤ ∆k+1

2 ≤ 1
2k+1 (b − a) ≤ (0.5)k+1 · (b − a)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is N = 2 · k,
which implies:

|xk+1 − x∗| ≤ (0.5)
N
2 +1 · (b − a) ≤ (0.707)N b − a

2

By marking the right side of the last inequality for ε, we get the number of method iterations needed to achieve ε
accuracy:

K =
⌈

log2
b − a

ε
− 1

⌉
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Golden selection

The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left and right)
and the insightful idea is, that on the next iteration one of the points will remain the golden point.

Figure 12: Key idea, that allows us to decrease function evaluations
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Golden selection. Algorithm

def golden_search(f, a, b, epsilon):
tau = (sqrt(5) + 1) / 2
y = a + (b - a) / tau**2
z = a + (b - a) / tau
while b - a > epsilon:

if f(y) <= f(z):
b = z
z = y
y = a + (b - a) / tau**2

else:
a = y
y = z
z = a + (b - a) / tau

return (a + b) / 2
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Golden selection. Bounds

|xk+1 − x∗| ≤ bk+1 − ak+1 =
( 1

τ

)N−1
(b − a) ≈ 0.618k(b − a),

where τ =
√

5+1
2 .

• The geometric progression constant more than the dichotomy method - 0.618 worse than 0.5

• The number of function calls is less than for the dichotomy method - 0.707 worse than 0.618 - (for each
iteration of the dichotomy method, except for the first one, the function is calculated no more than 2 times,
and for the gold method - no more than one)
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Successive parabolic interpolation

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points x1 < x2 < x3 such that line segment [x1, x3] contains minimum of a function
f(x). Then, we need to solve the following system of equations:

ax2
i + bxi + c = fi = f(xi), i = 1, 2, 3

Note, that this system is linear, since we need to solve it on a, b, c. Minimum of this parabola will be calculated as:

u = − b

2a
= x2 − (x2 − x1)2(f2 − f3) − (x2 − x3)2(f2 − f1)

2 [(x2 − x1)(f2 − f3) − (x2 − x3)(f2 − f1)]

Note, that if f2 < f1, f2 < f3, than u will lie in [x1, x3]
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Successive parabolic interpolation. Algorithm 1

def parabola_search(f, x1, x2, x3, epsilon):
f1, f2, f3 = f(x1), f(x2), f(x3)
while x3 - x1 > epsilon:

u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2 - f1)))
fu = f(u)

if x2 <= u:
if f2 <= fu:

x1, x2, x3 = x1, x2, u
f1, f2, f3 = f1, f2, fu

else:
x1, x2, x3 = x2, u, x3
f1, f2, f3 = f2, fu, f3

else:
if fu <= f2:

x1, x2, x3 = x1, u, x2
f1, f2, f3 = f1, fu, f2

else:
x1, x2, x3 = u, x2, x3
f1, f2, f3 = fu, f2, f3

return (x1 + x3) / 2

1The convergence of this method is superlinear, but local, which means, that you can take profit from using this method only near some
neighbour of optimum. Here is the proof of superlinear convergence of order 1.32.
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Inexact line search
Sometimes it is enough to find a solution, which will
approximately solve out problem. This is very typical
scenario for mentioned stepsize selection problem

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

Consider a scalar function ϕ(α) at a point xk:

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

The first-order approximation of ϕ(α) near α = 0 is:

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

Figure 13: Illustration of Taylor approximation of ϕI
0(α)
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Inexact line search. Sufficient Decrease
The inexact line search condition, known as the Armijo
condition, states that α should provide sufficient decrease
in the function f , satisfying:

f(xk − α∇f(xk)) ≤ f(xk) − c1 · α∇f(xk)⊤∇f(xk)

for some constant c1 ∈ (0, 1). Note that setting c1 = 1
corresponds to the first-order Taylor approximation of
ϕ(α). However, this condition can accept very small
values of α, potentially slowing down the solution process.
Typically, c1 ≈ 10−4 is used in practice.

ñ Example

If f(x) represents a cost function in an optimization
problem, choosing an appropriate c1 value is crucial.
For instance, in a machine learning model training
scenario, an improper c1 might lead to either very
slow convergence or missing the minimum.

Figure 14: Illustration of sufficient decrease condition with
coefficient c1
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Inexact line search. Goldstein Conditions
Consider two linear scalar functions ϕ1(α) and ϕ2(α):

ϕ1(α) = f(xk) − c1α∥∇f(xk)∥2

ϕ2(α) = f(xk) − c2α∥∇f(xk)∥2

The Goldstein-Armijo conditions locate the function ϕ(α)
between ϕ1(α) and ϕ2(α). Typically, c1 = ρ and
c2 = 1 − ρ, with ρ ∈ (0.5, 1).

Figure 15: Illustration of Goldstein conditions
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Inexact line search. Curvature Condition
To avoid excessively short steps, we introduce a second
criterion:

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

for some c2 ∈ (c1, 1). Here, c1 is from the Armijo
condition. The left-hand side is the derivative ∇αϕ(α),
ensuring that the slope of ϕ(α) at the target point is at
least c2 times the initial slope ∇αϕ(α)(0). Commonly,
c2 ≈ 0.9 is used for Newton or quasi-Newton methods.
Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

Figure 16: Illustration of curvature condition
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Inexact line search. Wolfe Condition

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

с

Figure 17: Illustration of Wolfe condition
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Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:

1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.
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Numerical illustration
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Figure 18: Comparison of different line search algorithms

Open In Colab ♣
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Matrix calculus
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Gradient

Let f(x) : Rn → R, then vector, which contains all first-order partial
derivatives:

∇f(x) = df

dx
=


∂f

∂x1
∂f

∂x2
...

∂f
∂xn



named gradient of f(x). This vector indicates the direction of the
steepest ascent. Thus, vector −∇f(x) means the direction of the
steepest descent of the function in the point. Moreover, the gradient
vector is always orthogonal to the contour line in the point.

ñ Example

For the function f(x, y) = x2 + y2, the
gradient is:

∇f(x, y) =
[

2x
2y

]
This gradient points in the direction of
the steepest ascent of the function.

ñ Question

How does the magnitude of the gradient
relate to the steepness of the function?
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Hessian
Let f(x) : Rn → R, then matrix, containing all the second order
partial derivatives:

f ′′(x) = ∇2f(x) = ∂2f

∂xi∂xj
=


∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn



In fact, Hessian could be a tensor in such a way: (f(x) : Rn → Rm)
is just 3d tensor, every slice is just hessian of corresponding scalar
function

(
∇2f1(x), . . . , ∇2fm(x)

)
.

ñ Example

For the function f(x, y) = x2 + y2, the
Hessian is:

Hf (x, y) =
[

2 0
0 2

]
This matrix provides information about the
curvature of the function in different
directions.

ñ Question

How can the Hessian matrix be used to
determine the concavity or convexity of
a function?
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Schwartz theorem
Let f : Rn → R be a function. If the mixed partial
derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj ∂xi
are both continuous on an

open set containing a point a, then they are equal at the
point a. That is,

∂2f

∂xi∂xj
(a) = ∂2f

∂xj∂xi
(a)

Given the Schwartz theorem, if the mixed partials are
continuous on an open set, the Hessian matrix is
symmetric. That means the entries above the main
diagonal mirror those below the main diagonal:

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
∇2f(x) = (∇2f(x))T

This symmetry simplifies computations and analysis
involving the Hessian matrix in various applications,
particularly in optimization.

ñ Schwartz counterexample

f(x, y) =

{
xy(x2−y2)

x2+y2 for (x, y) ̸= (0, 0),
0 for (x, y) = (0, 0).

Counterexample ♣

−2

−1

0

1

2

One can verify, that ∂2f
∂x∂y

(0, 0) ̸= ∂2f
∂y∂x

(0, 0), al-
though the mixed partial derivatives do exist, and
at every other point the symmetry does hold.
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Jacobian
The extension of the gradient of multidimensional
f(x) : Rn → Rm is the following matrix:

Jf = f ′(x) = df

dxT
=


∂f1
∂x1

∂f2
∂x1

. . . ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fm
∂x2

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

. . . ∂fm
∂xn


This matrix provides information about the rate of change
of the function with respect to its inputs.

ñ Question

Can we somehow connect those three definitions
above (gradient, jacobian, and hessian) using a sin-
gle correct statement?

ñ Example

For the function

f(x, y) =
[

x + y
x − y

]
,

the Jacobian is:

Jf (x, y) =
[

1 1
1 −1

]

ñ Question

How does the Jacobian matrix relate to the gradient
for scalar-valued functions?
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Summary

f(x) : X → Y ; ∂f(x)
∂x

∈ G

X Y G Name
R R R f ′(x) (derivative)
Rn R R⋉ ∂f

∂xi
(gradient)

Rn Rm Rn×m ∂fi

∂xj
(jacobian)

Rm×n R Rm×n ∂f

∂xij
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Differentials

ñ Theorem

Let x ∈ S be an interior point of the set S, and let D : U → V be a linear operator. We say that the
function f is differentiable at the point x with derivative D if for all sufficiently small h ∈ U the following
decomposition holds:

f(x + h) = f(x) + D[h] + o(∥h∥)

If for any linear operator D : U → V the function f is not differentiable at the point x with derivative D,
then we say that f is not differentiable at the point x.
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Differentials

After obtaining the differential notation of df we can retrieve the gradient using the following formula:

df(x) = ⟨∇f(x), dx⟩

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector
function, we treat “old” dx as the constant dx1, then calculate d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx⟩ = ⟨Hf (x)dx1, dx⟩
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Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0

• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y ) = dX + dY
• d(XT ) = (dX)T

• d(XY ) = (dX)Y + X(dY )
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1
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Matrix calculus. Example 1

ñ Example

Find df, ∇f(x), if f(x) = ⟨x, Ax⟩ − bT x + c.
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Matrix calculus. Example 2

ñ Example

Find df, ∇f(x), if f(x) = ln⟨x, Ax⟩.

1. It is essential for A to be positive definite, because it is a logarithm argument. So, A ∈ Sn
++Let’s find the

differential first:

df = d (ln⟨x, Ax⟩) = d (⟨x, Ax⟩)
⟨x, Ax⟩ = ⟨dx, Ax⟩ + ⟨x, d(Ax)⟩

⟨x, Ax⟩ =

= ⟨Ax, dx⟩ + ⟨x, Adx⟩
⟨x, Ax⟩ = ⟨Ax, dx⟩ + ⟨AT x, dx⟩

⟨x, Ax⟩ = ⟨(A + AT )x, dx⟩
⟨x, Ax⟩

2. Note, that our main goal is to derive the form df = ⟨·, dx⟩

df =
〈

2Ax

⟨x, Ax⟩ , dx

〉
Hence, the gradient is ∇f(x) = 2Ax

⟨x, Ax⟩
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Matrix calculus. Example 3

ñ Example

Find df, ∇f(X), if f(X) = ⟨S, X⟩ − log det X.
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Automatic differentiation
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Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

. . .

Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network). You may use a lot of algorithms to approach this problem, but given the modern
size of the problem, where d could be dozens of billions it is very challenging to solve this problem without
information about the gradients using zero-order optimization algorithms. That is why it would be beneficial to be

able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

. Typically, first-order methods perform much better
in huge-scale optimization, while second-order methods require too much memory.
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Finite differences
The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

ñ Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
** Answer ** 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is
unstable, which means that you will have to choose between accuracy and stability.

ñ Theorem

There is an algorithm to compute ∇wL in O(T ) operations. 2

2Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.
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Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 19: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.
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Forward mode automatic differentiation

Figure 20: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w1
= 1,

∂w2

∂w1
= 0
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Forward mode automatic differentiation

Figure 21: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1
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Forward mode automatic differentiation

Figure 22: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1
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Forward mode automatic differentiation

Figure 23: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1
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Forward mode automatic differentiation

Figure 24: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1
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Make the similar computations for ∂L

∂w2

Figure 25: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)
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Forward mode automatic differentiation example

Figure 26: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w2
= 0,

∂w2

∂w2
= 1
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Forward mode automatic differentiation example

Figure 27: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w2

= ∂v1
∂w2

∂w2
∂w2

= 0 · 1

Automatic differentiation v § } 37

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic differentiation example

Figure 28: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w2

= ∂v2
∂v1

∂v1
∂w2

+ ∂v2
∂w2

∂w2
∂w2

= w2
∂v1
∂w2

+ v1
∂w2
∂w2
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Forward mode automatic differentiation example

Figure 29: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w2

= ∂v3
∂v2

∂v2
∂w2

= 1
2√

v2
∂v2
∂w2
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Forward mode automatic differentiation example

Figure 30: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w2
= ∂L

∂v2
∂v2
∂w2

+ ∂L
∂v3

∂v3
∂w2

= 1 ∂v2
∂w2

+ 1 ∂v3
∂w2
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Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 31: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).
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Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 32: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
∂L

∂w1
,

∂L

∂w1
:
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Backward mode automatic differentiation

ñ Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇wL. Is it a free lunch? What is the cost of acceleration?

ñ Answer

Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach,
which involves necessary recomputations of some intermediate values. This could significantly reduce
the memory footprint of the large machine-learning model.
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Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 33: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi
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Choose your fighter

Which of the AD modes would you choose (forward/ reverse) for the following
computational graph of primitive arithmetic operations? Suppose, you are needed

to compute the jacobian J =
{

∂Li

∂wj

}
i,j

Note, that the reverse mode computational time is proportional to the number of
outputs here, while the forward mode works proportionally to the number of
inputs there. This is why it would be a good idea to consider the forward mode
AD.

Figure 34: Which mode would you
choose for calculating gradients there?
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Choose your fighter

Figure 35: This graph nicely illustrates the idea of choice between the modes. The n = 100 dimension is fixed and the graph
presents the time needed for Jacobian calculation w.r.t. x for f(x) = Ax

Automatic differentiation v § } 43

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Which of the AD modes would you choose (forward/ reverse) for the following
computational graph of primitive arithmetic operations? Suppose, you are needed

to compute the jacobian J =
{

∂Li

∂wj

}
i,j

. Note, that G is an arbitrary

computational graph
It is generally impossible to say it without some knowledge about the specific
structure of the graph G. Note, that there are also plenty of advanced approaches
to mix forward and reverse mode AD, based on the specific G structure.

Figure 36: Which mode would you
choose for calculating gradients there?
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Feedforward Architecture

FORWARD
• v0 = x typically we have a batch of data x here as an input.

• For k = 1, . . . , t − 1, t:

• vk = σ(vk−1wk). Note, that practically speaking the data has
dimension x ∈ Rb×d, where b is the batch size (for the single
data point b = 1). While the weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the dimension of an inner
representation of the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 37: Feedforward neural network architecture
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What automatic differentiation (AD) is NOT:

• AD is not a finite differences

• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and numerically

stable
• AD (reverse mode) is memory inefficient (you need

to store all intermediate computations from the
forward pass).

Figure 38: Different approaches for taking derivatives
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Code

Open In Colab ♣
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