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Why do we want to solve dual problems?

Primal problem

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p

Dual problem

g(λ, ν) = min
x∈D

L(x, λ, ν) =

min
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1
νihi(x)

)
→ max

λ∈Rm,ν∈Rp

s.t. λ ⪰ 0

• Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

• Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

• Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal
problem. This can be useful for assessing the quality of approximate solutions.

• Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution’s optimality.
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Conjugate functions
Recall that given f : Rn → R, the function
defined by

f∗(y) = max
x

[
yT x − f(x)

]
is called its conjugate.
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Conjugate function properties

Recall that given f : Rn → R, the function defined by

f∗(y) = max
x

[
yT x − f(x)

]
is called its conjugate.

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

[
f(x) − yT x

]

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x) ⇔ x ∈ arg min
z

[
f(z) − yT z

]
• If f is strictly convex, then

∇f∗(y) = arg min
z

[
f(z) − yT z

]
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Conjugate function properties (proofs)

We will show that x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x), assuming that f is convex and closed.
• Proof of ⇐: Suppose y ∈ ∂f(x). Then x ∈ My, the set of maximizers of yT z − f(z) over z. But

f∗(y) = max
z

{yT z − f(z)} and ∂f∗(y) = cl(conv(
⋃

z∈My

{z})).

Thus x ∈ ∂f∗(y).

• Proof of ⇒: From what we showed above, if x ∈ ∂f∗(y), then y ∈ ∂f∗(x), but f∗∗ = f .

Clearly y ∈ ∂f(x) ⇔ x ∈ arg minz{f(z) − yT z}

Lastly, if f is strictly convex, then we know that f(z) − yT z has a unique minimizer over z, and this must be
∇f∗(y).
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Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min

x
f(x) subject to Ax = b

Its dual problem is:
max

u
−f∗(−AT u) − bT u

where f∗ is the conjugate of f . Defining g(u) = −f∗(−AT u) − bT u, note that:
∂g(u) = A∂f∗(−AT u) − b

Therefore, using what we know about conjugates
∂g(u) = Ax − b where x ∈ arg min

z

[
f(z) + uT Az

]
Dual ascent method for maximizing dual objective:

ñ

xk ∈ arg min
x

[
f(x) + (uk−1)T Ax

]
uk = uk−1 + αk(Axk − b)

• Step sizes αk, k = 1, 2, 3, . . ., are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.
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Slopes of f and f ∗

Figure 1: Geometrical sense on f∗
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Slopes of f and f ∗

Assume that f is a closed and convex function. Then f is strongly convex with parameter µ ⇔ ∇f∗ is Lipschitz
with parameter 1/µ.

Proof of “⇒”: Recall, if g is strongly convex with minimizer x, then

g(y) ≥ g(x) + µ

2 ∥y − x∥2, for all y

Hence, defining xu = ∇f∗(u) and xv = ∇f∗(v),

f(xv) − uT xv ≥ f(xu) − uT xu + µ

2 ∥xu − xv∥2

f(xu) − vT xu ≥ f(xv) − vT xv + µ

2 ∥xu − xv∥2

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

∥xu − xv∥2 ≤ 1
µ

∥u − v∥2
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Slopes of f and f ∗

Proof of “⇐”: for simplicity, call g = f∗ and L = 1
µ

. As ∇g is Lipschitz with constant L, so is
gx(z) = g(z) − ∇g(x)T z, hence

gx(z) ≤ gx(y) + ∇gx(y)T (z − y) + L

2 ∥z − y∥2
2

Minimizing each side over z, and rearranging, gives

1
2L

∥∇g(x) − ∇g(y)∥2 ≤ g(y) − g(x) + ∇g(x)T (x − y)

Exchanging roles of x, y, and adding together, gives

1
L

∥∇g(x) − ∇g(y)∥2 ≤ (∇g(x) − ∇g(y))T (x − y)

Let u = ∇f(x), v = ∇g(y); then x ∈ ∂g∗(u), y ∈ ∂g∗(v), and the above reads (x − y)T (u − v) ≥ ∥u−v∥2

L
,

implying the result.
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2 ∥z − y∥2
2

Minimizing each side over z, and rearranging, gives

1
2L

∥∇g(x) − ∇g(y)∥2 ≤ g(y) − g(x) + ∇g(x)T (x − y)

Exchanging roles of x, y, and adding together, gives

1
L

∥∇g(x) − ∇g(y)∥2 ≤ (∇g(x) − ∇g(y))T (x − y)

Let u = ∇f(x), v = ∇g(y); then x ∈ ∂g∗(u), y ∈ ∂g∗(v), and the above reads (x − y)T (u − v) ≥ ∥u−v∥2

L
,

implying the result.
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Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,
the step sizes here should be: µ

σmax(A)2 (first case) and 2
σmax(A)2

µ
+ σmin(A)2

L

(second case).)

• If f is strongly convex with parameter µ, then dual gradient ascent with constant step sizes αk = µ converges
at sublinear rate O( 1

ϵ
).

• If f is strongly convex with parameter µ and ∇f is Lipschitz with parameter L, then dual gradient ascent with
step sizes αk = 2

1
µ

+ 1
L

converges at linear rate O(log( 1
ϵ
)).

• Note that this describes convergence in the dual. Convergence in the primal requires more assumptions
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Example: equality constrained quadratic minimization.

f(x) = 1
2xT Ax − bT x → min

x∈Rn
subject to Cx = d, A ∈ Sn

+, C ∈ Rm×n, m < n.

0 100 200
Iteration

10 14
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100
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* |

Quadratic constrained optimization. n=10, m=5, =1, L=10.

Dual Gradient Ascent  1.20e-01 Projected Gradient Descent  2.00e-01

We need to find a minimum of a quadratic function in some linear subspace, defined by the solution of linear
equation Cx = d. This is a conditional optimization problem, we start from strongly convex setting.
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Example: equality constrained quadratic minimization.

f(x) = 1
2xT Ax − bT x → min

x∈Rn
subject to Cx = d, A ∈ Sn

+, C ∈ Rm×n, m < n.
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Quadratic constrained optimization. n=10, m=5, =0.001, L=10.

Dual Gradient Ascent  2.00e-04 Projected Gradient Descent  2.00e-01

Situation is getting worse as soon as we loose strong convexity, the dual convergence will still be linear, but the rate
is very low.
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Dual decomposition
Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables, with each xi ∈ Rni . We can also partition A
accordingly:

A = [A1 . . . AB ], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate
problems:

xnew ∈ arg min
x

(
B∑

i=1

fi(xi) + uT Ax

)
⇒ xnew

i ∈ arg min
xi

(
fi(xi) + uT Aixi

)
, i = 1, . . . , B

xk
i ∈ arg min

xi

(
fi(xi) + (uk−1)T Aixi

)
, i = 1, . . . , B

uk = uk−1 + αk

(
B∑

i=1

Aix
k
i − b

)
Can think of these steps as:

• Broadcast: Send u to each of the B
processors, each optimizes in parallel to find xi.

• Gather: Collect Aixi from each processor,
update the global dual variable u.
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Inequality constraints

Consider the optimization problem:

min
x

B∑
i=1

fi(xi) subject to
B∑

i=1

Aixi ≤ b

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

• The primal update step:

xk
i ∈ arg min

xi

[
fi(xi) +

(
uk−1)T

Aixi

]
, i = 1, . . . , B

• The dual update step:

uk =

(
uk−1 + αk

(
B∑

i=1

Aix
k
i − b

))
+

where (u)+ denotes the positive part of u, i.e., (u+)i = max{0, ui}, for i = 1, . . . , m.
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Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with B units, where each unit independently chooses its decision variable
xi, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable uj represents the price of resource j.

• Dual Update Rule:
unew

j = (uj − tsj)+, j = 1, . . . , m

where s = b −
∑B

i=1 Aixi represents the slacks.
• Price Adjustments:

• Increase price uj if resource j is over-utilized (sj < 0).
• Decrease price uj if resource j is under-utilized (sj > 0).
• Never let prices get negative; hence the use of the positive part notation (·)+.
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Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
x

f(x) + ρ

2 ∥Ax − b∥2

s.t. Ax = b

where ρ > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:

xk = arg min
x

[
f(x) + (uk−1)T Ax + ρ

2 ∥Ax − b∥2
]

uk = uk−1 + ρ(Axk − b)
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Augmented Lagrangian method aka method of multipliers

Notice step size choice αk = ρ in dual algorithm. Why?

Since xk minimizes the function:
f(x) + (uk−1)T Ax + ρ

2 ∥Ax − b∥2

over x, we have the stationarity condition:

0 ∈ ∂f(xk) + AT (uk−1 + ρ(Axk − b))

which simplifies to:
∂f(xk) + AT uk

This represents the stationarity condition for the original primal problem; under mild conditions, Axk − b → 0 as
k → ∞, so the KKT conditions are satisfied in the limit and xk, uk converge to the solutions.

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)
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Example: equality constrained quadratic minimization.

f(x) = 1
2xT Ax − bT x → min

x∈Rn
subject to Cx = d, A ∈ Sn

+, C ∈ Rm×n, m < n.
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Quadratic constrained optimization. n=10, m=5, =1, L=10.

Dual Gradient Ascent  1.20e-01 Augmented Lagrangian  100.00 Projected Gradient Descent  2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.
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Quadratic constrained optimization. n=10, m=5, =0.001, L=10.

Dual Gradient Ascent  2.00e-04 Augmented Lagrangian  10.00 Projected Gradient Descent  2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.
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Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min
x,z

f(x) + g(z)

s.t. Ax + Bz = c

We augment the objective to include a penalty term for constraint violation:

min
x,z

f(x) + g(z) + ρ

2 ∥Ax + Bz − c∥2

s.t. Ax + Bz = c

where ρ > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Lρ(x, z, u) = f(x) + g(z) + uT (Ax + Bz − c) + ρ

2 ∥Ax + Bz − c∥2
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for k = 1, 2, 3, . . .:

1. Update x:
xk = arg min

x
Lρ(x, zk−1, uk−1)

2. Update z:
zk = arg min

z
Lρ(xk, z, uk−1)

3. Update u:
uk = uk−1 + ρ(Axk + Bzk − c)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(x(k), z(k)) = arg min
x,z

Lρ(x, z, u(k−1))
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Example: Alternating Projections
Consider finding a point in the intersection of convex sets
U, V ⊆ Rn:

min
x

IU (x) + IV (x)

To transform this problem into ADMM form, we express it
as:

min
x,z

IU (x) + IV (z) subject to x − z = 0

Each ADMM cycle involves two projections:

xk = arg min
x

PU (zk−1 − wk−1)

zk = arg min
z

PV (xk + wk−1)

wk = wk−1 + xk − zk
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Sources

• Ryan Tibshirani. Convex Optimization 10-725
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