Dual methods: Dual Gradient Ascent,
Augmented Lagrangian Method, ADMM

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

fo(z) — min
TeR™
st. fi(z)<0,i=1,...,m

hz(x):O, i:l,...,p

Dual problem

g(A,v) =min L(z,\,v) =

xzeD
m p
n (f0<1’> PR 2 Vi’”@) et
st. A>=0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

— mi :
‘f §ny1r; Introduction to dual methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem Dual problem
fo(z) — min g(A,v) =min L(z,\,v) =
zERN z€D
st. fi(z) <0,i=1,...,m . m P
hi(x)=0,i=1,...,p me (fo(l’) + ;Azfz(f) + Z:lmhz(l’)> — ... S
st. A>=0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

— mi :
‘f 510;1; Introduction to dual methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

fo(z) — min
TeR™
st. fi(z) <0,i=1,...,m

hl(x)zo, i:l,...,p

Dual problem

g(A,v) =min L(z,\,v) =

ze€D

m P
n (f0<1’> PR 2 Vi’”@) et
st. A>=0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.
® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for

economic modeling and analysis.

® Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal
problem. This can be useful for assessing the quality of approximate solutions.

— mi :
‘f 5“.}‘; Introduction to dual methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

fo(z) — min
TeR™
st. fi(z) <0,i=1,...,m

hl(x)zo, i:l,...,p

Dual problem

g(A,v) =min L(z,\,v) =

xzeD
m p
n (f0<1’> PR 2 Vi’“@) et
st. A>=0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.
® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for

economic modeling and analysis.

® Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal
problem. This can be useful for assessing the quality of approximate solutions.
® Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information

about the solution’s optimality.

— mi :
‘f 5“.}‘; Introduction to dual methods

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate functions

f(z)

/
7/
Va4
/s 7
LYy,
/7 7
7/ 7
7/ 7
7/ 7
7/ 7
7

Conjugate functions

‘f — min
Tz

A

Recall that given f : R™ — R, the function
defined by

Fi(y) = max [y"z — f(x)]

is called its conjugate.

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Geometrical intution

f(z)

— mi . .
‘f fnﬂ Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Geometrical intution

f(z)

f*ﬂy)

slope = xg

— mi . .
‘f 5“;‘; Conjugate functions

Y1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties

Recall that given f : R™ — R, the function defined by
f*(y) = max [y"z — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since

[(y) = min [f(z) "]

‘f - §ny1r; Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties

Recall that given f : R™ — R, the function defined by
f*(y) = max [y"z — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since
1" (y) = min [f(z) — y"2]
e If fis closed and convex, then f** = f. Also,

z€df (y) yedf(z)sze argmzin [f(z) —yTz]

‘f - W;rﬁ Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties

Recall that given f : R™ — R, the function defined by
f*(y) = max [y"z — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since
1 () = min [f(2) ~ y"]
e If fis closed and convex, then f** = f. Also,
z€df(y) ©yedf(z) =€ argmzin [f(z) - yTz]

® |f f is strictly convex, then
VI (y) = argmin [f(2) — " 7]

‘f - W;rﬁ Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that x € 0f*(y) & y € 0f(x), assuming that f is convex and closed.

® Proof of <: Suppose y € Of(z). Then & € M,, the set of maximizers of y”z — f(z) over z. But

f') = max{y’z— f(z)} and Of"(y) = cl(conv([] {z})).

zeMy

Thus z € 0f*(y).

‘f - §ny1r; Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that x € 0f*(y) & y € 0f(x), assuming that f is convex and closed.

® Proof of <: Suppose y € Of(z). Then & € M,, the set of maximizers of y”z — f(z) over z. But

f') = max{y’z— f(z)} and Of"(y) = cl(conv([] {z})).

zeMy

Thus z € 0f*(y).
® Proof of =: From what we showed above, if z € 9f*(y), then y € 0f*(z), but f** = f.

‘f - fny"; Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that x € 0f*(y) & y € 0f(x), assuming that f is convex and closed.

® Proof of <: Suppose y € Of(z). Then & € M,, the set of maximizers of y”z — f(z) over z. But

f') = max{y’z— f(z)} and Of"(y) = cl(conv([] {z})).

zeMy

Thus z € 0f*(y).
® Proof of =: From what we showed above, if z € 9f*(y), then y € 0f*(z), but f** = f.

‘f - fny"; Conjugate functions

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that x € 0f*(y) & y € 0f(x), assuming that f is convex and closed.
® Proof of <: Suppose y € Of(z). Then & € M,, the set of maximizers of y”z — f(z) over z. But

f') = max{y’z— f(z)} and Of"(y) = cl(conv([] {z})).

2€M,
Thus z € 0f*(y).
® Proof of =: From what we showed above, if z € 9f*(y), then y € 0f*(z), but f** = f.
Clearly y € 0f(x) & = € argmin.{f(z) — y” 2}

Lastly, if f is strictly convex, then we know that f(z) — y” 2 has a unique minimizer over z, and this must be

VI(y).

‘f - §“}‘§ Conjugate functions QDO

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual (sub)gradient method

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(z) subjectto Az =0

lf*ﬂ‘“, Dual ascent 00 O 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual (sub)gradient method

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(z) subjectto Az =0

Its dual problem is:
max —f*(—A"Tu) —b"u

where f* is the conjugate of f. Defining g(u) = —f*(—ATw) — b7 u, note that:
dg(u) = Adf*(—A"u) — b

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual (sub)gradient method

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(z) subjectto Az =0

Its dual problem is:
max —f*(—A"Tu) —b"u

where f* is the conjugate of f. Defining g(u) = —f*(—ATw) — b7 u, note that:
dg(u) = Adf*(—A"u) — b

Therefore, using what we know about conjugates

dg(u) = Az —b where z € argmin [f(z) + uTAz]

lf%ﬁ}‘i Dual ascent 00

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual (sub)gradient method

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(z) subjectto Az =0

Its dual problem is:
max —f*(—A"Tu) —b"u

where f* is the conjugate of f. Defining g(u) = —f*(—ATw) — b7 u, note that:
dg(u) = Adf*(—A"u) — b

Therefore, using what we know about conjugates

dg(u) = Az —b where z € argmin [f(z) + uTAz]

Dual ascent method for maximizing dual objective: ® Step sizes a, k=1,2,3,...

ways.

TK, € arg rr;in [f(a:) + (uk,l)TAa:}

Uk = up—1 + ar(Axr — b)

— min
‘f Tz Dual ascent

, are chosen in standard

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual (sub)gradient method

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(z) subjectto Az =0
Its dual problem is:
max —f*(—A"Tu) —b"u
where f* is the conjugate of f. Defining g(u) = —f*(—ATw) — b7 u, note that:
dg(u) = Adf*(—A"u) — b

Therefore, using what we know about conjugates

dg(u) = Az —b where z € argmin [f(z) + uTAz]

Dual ascent method for maximizing dual objective: ® Step sizes a, kK =1,2,3,..., are chosen in standard
ways.
i ® Proximal gradients and acceleration can be applied as
Tk € arg min [f(a:) + (uk,l)TAa:} they would usually.

Uk = up—1 + ar(Axr — b)

‘fﬁ}fﬂ.}‘; Dual ascent 0 O 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter p < V f* is Lipschitz
with parameter 1/p.

lf%ﬁ}‘i Dual ascent 00

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter p < V f* is Lipschitz
with parameter 1/p.

Proof of “=": Recall, if g is strongly convex with minimizer z, then

g(y) > g(z) + gl\y — x|, forally

‘f%w‘; Dual ascent 00

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter p < V f* is Lipschitz
with parameter 1/p.

Proof of “=": Recall, if g is strongly convex with minimizer z, then
K 2
9() 2 g(z) + S lly —z[”, forally
Hence, defining z, = Vf*(u) and z, = V f*(v),

fleo) —uTzy > flaw) —u"zy + gnxu —a|?

f(xu) - 'UTxu > f(m'u) — ’UT.Ty + g”ﬂ?u — le||2

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter p < V f* is Lipschitz
with parameter 1/p.

Proof of “=": Recall, if g is strongly convex with minimizer z, then
© 2
9() 2 g(z) + S lly —z[”, forally
Hence, defining z, = Vf*(u) and x, = V f*(v),
Flaw) —ues > fl@n) —uTww + Sllaw — 2l
f(xu) - 'UTwu > f(m'u) — ’UT.Ty + %Hﬂ?u — le||2
Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

1
lzw = zol* < = lu —v||?
I

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

1

Proof of “<": for simplicity, call g = f* and L = -. As Vg is Lipschitz with constant L, so is

92(2) = g(2) — Vg(x)T 2, hence

— min
‘f Tz Dual ascent

m

9o(2) < 9(y) + Vau o) (=~ v) + 1l — w3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = i As Vg is Lipschitz with constant L, so is

92(2) = g(2) — Vg(x)T 2, hence
9o(2) < 9(y) + Vau o) (=~ v) + 1l — w3

Minimizing each side over z, and rearranging, gives

5= 199(2) ~ Vo) < 9(y) — 9(x) + V(@) (x —)

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = i As Vg is Lipschitz with constant L, so is

92(2) = g(2) — Vg(x)T 2, hence
9o(2) < 9(y) + Vau o) (=~ v) + 1l — w3
Minimizing each side over z, and rearranging, gives
5= 199(2) ~ Vo) < 9(y) — 9(x) + V(@) (x —)
Exchanging roles of x, y, and adding together, gives

%I\Vg(m) —Vgw)lI* < (Vg(z) — Va) (z —y)

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = i As Vg is Lipschitz with constant L, so is

92(2) = g(2) — Vg(x)T 2, hence
9o(2) < 9(y) + Vau o) (=~ v) + 1l — w3
Minimizing each side over z, and rearranging, gives
5= 199(2) ~ Vo) < 9(y) — 9(x) + V(@) (x —)
Exchanging roles of x, y, and adding together, gives

%I\Vg(m) —Vgw)lI* < (Vg(z) — Va) (z —y)

Let u = Vf(z), v = Vg(y); then = € dg*(u), y € dg*(v), and the above reads (z — y)T (u — v) > 2=l
implying the result.

‘f - fnﬂ Dual ascent @0

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,

the step sizes here should be: —£—— (first case) and 2 second case).
O'max<A)

omax(A)?2 +

Tmin(A)2
m L

® |f f is strongly convex with parameter u, then dual gradient ascent with constant step sizes ax = u converges
at sublinear rate O(2).

‘f% 5“.}‘; Dual ascent 0 O 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,
. . © H 2
the step sizes here should be: ——/= (first case) and W (second case).)
m
® |f f is strongly convex with parameter u, then dual gradient ascent with constant step sizes ax = u converges

at sublinear rate O(2).
® If f is strongly convex with parameter ;1 and V f is Lipschitz with parameter L, then dual gradient ascent with

converges at linear rate O(log(1)).

step sizes a = T

=
|

— min
‘f T Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,
e (first case) and ———2——— (second case).)

the step sizes here should be: — p—E +amanL<A)2
m

® |f f is strongly convex with parameter u, then dual gradient ascent with constant step sizes ax = u converges

at sublinear rate O(2).
® If f is strongly convex with parameter ;1 and V f is Lipschitz with parameter L, then dual gradient ascent with

step sizes ax = 1 converges at linear rate O(log(3)).
wtT
® Note that this describes convergence in the dual. Convergence in the primal requires more assumptions

— min
‘f Tz Dual ascent

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

flz) = %xTAx bz — m%{n subject to Cz =d, AeSy,CeR™" m<n.
x€R™

Quadratic constrained optimization. n=10, m=5, p=1, L=10.

100 {

10-2 4 1071 4 10-1 4
— — _ — 1072
T 10764 = 1075 "o 1075 b
I X i T g
Z 1010 £ 1071 § 102 4 4 107

10-14 4 10713 4 10713 4 107 A

0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 1.20e-01 Projected Gradient Descent a 2.00e-01

We need to find a minimum of a quadratic function in some linear subspace, defined by the solution of linear
equation Cz = d. This is a conditional optimization problem, we start from strongly convex setting.

‘f - §ny1r; Dual ascent 0 O

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

flz) = %xTAm bz — m]iRn subject to Cz =d, AeSy,CeR™" m<n.
zeR™

Quadratic constrained optimization. n=10, m=5, u=0.001, L=10.

103 4 103 { 108 | 10° 4
107! _ 101 4 l\ —
§ 1075 107 o 10 =
g 10 X 10 g 107 =107

10722 4 10722 4 1073 4
6 10600 20600 6 10600 20600 6 10600 20600 6 10600 20600
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 2.00e-04 Projected Gradient Descent a 2.00e-01

Situation is getting worse as soon as we loose strong convexity, the dual convergence will still be linear, but the rate
is very low.

‘f - §ny1r; Dual ascent 0 O 13

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual decomposition
Consider

— min
‘f Tz Dual ascent

B
minz fi(zi) subjectto Ax=0b

i=1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual decomposition

Consider
B
minz fi(zi) subjectto Ax=0b
R
Here z = (x1,...,2p) € R" divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:

A=[A;...Ag], where A; € R™*"™

‘f - §“}‘§ Dual ascent Q0

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual decomposition

Consider
B
minz fi(zi) subjectto Ax=0b
R
Here z = (x1,...,2p) € R" divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:

A=[A;...Ag], where A; € R™*"™

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate

problems:
B
new . T
(o A
"™ € argmin (Z; filzs) +u a:)
= 77" € arg min (fl(xl) + uTAiati) , i=1,...,B
z¥ € argmin (fl(xl) + (ukil)TAixi) , i=1,...,B

B

ko k-1 k

u=u"T ag E Az —b
=1

‘fﬁ}fnﬂ Dual ascent 0 O 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual decomposition

Consider
B
minz fi(zi) subjectto Ax=0b
R
Here z = (x1,...,2p) € R" divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:

A=[A;...Ag], where A; € R™*"™

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate
problems:

B
new . T
€ (T A
T arg mmln z_; fi(xs) +u” Az
new . T .
= Eargmm(fi(xi)Jru Aixi), i=1,...,B
' Can think of these steps as:
z¥ € argmin (fl(xl) + (ukfl)TAixi) , i=1,...,B ® Broadcast: Send u to each of the B
i processors, each optimizes in parallel to find z;.

B

ko k-1 k

u=u"T ag E Az —b
=1

‘f% 5“.}‘; Dual ascent D0 O 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Dual decomposition

Consider
B
minz fi(zi) subjectto Ax=0b
R
Here z = (x1,...,2p) € R" divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:

A=[A;...Ag], where A; € R™*"™

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate
problems:

B
2" € arg min Z filz:) + uT Az
T \i=
new

= x; € argmin (fl(xl) +uTA¢x¢) , i=1,...,B
' Can think of these steps as:

z¥ € argmin (fl(xl) + (ukfl)TAixi) , i=1,...,B ® Broadcast: Send u to each of the B
i processors, each optimizes in parallel to find z;.
B . o
- P ® Gather: Collect A;x; fron'! each processor,
U =u Ak iy update the global dual variable u.
=1

‘f% 5“.}‘; Dual ascent D0 O 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

— min
‘f Tz Dual ascent

B

i i(Ti bject t
mmefl(:rz) subject to

=1

B
=1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:
B B
min i(zi) subject to Az <b
1 Zlfz(z)) Zl iLi >

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

® The primal update step:

z¥ € arg min [fl(xl) + (ukfl)TAixi} , i=1,...,B

Ti

‘f% 5“.}‘; Dual ascent 0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:
B B
min i(zi) subject to Az <b
1 Zlfz(1)) Zl iLi

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

® The primal update step:

z¥ € arg min [fl(xl) + (ukfl)TAixi} , i=1,...,B

Ti

B
ub = (ukl + ag (Z Aixf — b>>
i=1 4

where (u)4 denotes the positive part of u, i.e., (uy); = max{0,u;}, fori =1,...,m.

® The dual update step:

‘f% 5“.}‘; Dual ascent 0 O 15

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

‘f - ;nylr; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

‘fﬁ}fﬂ.}‘; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.
® Dual Update Rule:
r!ew

u; = (u; —tsj)+, j=1,...,m

where s = b — S"7 | A;x; represents the slacks.

‘fﬁ}fﬂ.}‘; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.
® Dual Update Rule:
new .
Uj :(Uj—tSj)+7]:17...,777/
where s = b — Zf:l A;x; represents the slacks.

® Price Adjustments:

‘f% 5“.}‘; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:
new .
Uj :(Uj—tSj)+7]:17...,777/
where s = b — Zf:l A;x; represents the slacks.
® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).

‘f% 5“.}‘; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:
new .
Uj :(Uj—tSj)+7]:17...,777/
where s = b — Zil A;x; represents the slacks.
® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).
® Decrease price u; if resource j is under-utilized (s; > 0).

‘f% 5“.}‘; Dual ascent 0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:
new .
Uj :(Uj—tSj)+7]:17...,777/
where s = b — Zil A;x; represents the slacks.
® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).
® Decrease price u; if resource j is under-utilized (s; > 0).
® Never let prices get negative; hence the use of the positive part notation (-).

‘f% 5“.}‘; Dual ascent D0 O 16

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min f(z) + £/ Az - b|

st. Az =b

‘f - ;nylr; Augmented Lagrangian method 0 O 17

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the

primal problem:
: P 2
min f(z) + 5]} Az - |
st. Az =b

where p > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly

convex if matrix A has full column rank.

‘f - W;rﬁ Augmented Lagrangian method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the

primal problem:
: P 2
min f(z) + 5]} Az - |
st. Az =b

where p > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:
xy = argmin | f(z) + (up—1)" Az + gHA:c - b||2}
x

ur = ugp—1 + p(Azk — b)

‘f - ﬁ}‘i Augmented Lagrangian method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice o = p in dual algorithm. Why?

Since xx minimizes the function:
J(@) + (uem) " Ax + Elj A — b

over x, we have the stationarity condition:

0cdf(xr) + AT (up_1 + p(Azg — b))

which simplifies to:
af(l’k) + ATuk

‘f - §ny1r; Augmented Lagrangian method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice o = p in dual algorithm. Why?

Since xx minimizes the function:
F@) + (us-2)" Az + £ Ax — o]

over x, we have the stationarity condition:

0cdf(xr) + AT (up_1 + p(Azg — b))

which simplifies to:
af(l’k) + ATuk

This represents the stationarity condition for the original primal problem; under mild conditions, Az — b — 0 as
k — oo, so the KKT conditions are satisfied in the limit and xk, ur converge to the solutions.

® Advantage: The augmented Lagrangian gives better convergence.

‘f - 510;!; Augmented Lagrangian method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice o = p in dual algorithm. Why?

Since xx minimizes the function:
F@) + (us-2)" Az + £ Ax — o]

over x, we have the stationarity condition:

0cdf(xr) + AT (up_1 + p(Azg — b))

which simplifies to:
af(xk) + ATuk

This represents the stationarity condition for the original primal problem; under mild conditions, Az — b — 0 as
k — oo, so the KKT conditions are satisfied in the limit and xk, ur converge to the solutions.

® Advantage: The augmented Lagrangian gives better convergence.
® Disadvantage: We lose decomposability! (Separability is ruined)

‘f - fnﬂ Augmented Lagrangian method

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

flx) = %wTAx B m%{n subject to Czx =d, AcS},CeR™"™ m<n.
zeR™

Quadratic constrained optimization. n=10, m=5, p=1, L=10.

10_1 1 100 -
1072 10-2
_ 10-3 4
o —6 = 10751 ¥ -6 .
»T 10)|< ?\ 10 < 10764
= o] - I
& 107101 £ g0 = 1071
10714 4 10713 4 10714 10712 4
0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 1.20e-01 —— Augmented Lagrangian p 100.00 —— Projected Gradient Descent o 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.

‘f - iny"} Augmented Lagrangian method 0 O 19

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

flx) = %wTAx B m%{n subject to Czx =d, AcS},CeR™"™ m<n.
zeR™

Quadratic constrained optimization. n=10, m=5, u=0.001, L=10.

3 3]

10 10 102 4 O\ 10-1 4

_ 107t _ 10714 _ 1024 1074 4
5 - — Y e

T o107® X 107 1 I 107° A T 1074

g 10-° i‘ 1079 4 % 10-10 4 = 19-10 |

10713 10-13 4 10724 4 10713 4

0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 2.00e-04 —— Augmented Lagrangian p 10.00 —— Projected Gradient Descent a 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.

‘f - iny"} Augmented Lagrangian method 0 O 20

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

T,z

st. Avr+ Bz=c

‘f - §ny1r; Introduction to ADMM 0 O

21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

T,z
st. Ar+Bz=c
We augment the objective to include a penalty term for constraint violation:

min f(x) 4+ g(z) + §||Ax + Bz — c||2

st. Ar+Bz=¢

‘f - 510;!; Introduction to ADMM

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

2
st. Ar+Bz=c
We augment the objective to include a penalty term for constraint violation:
min f(z) +g(2) + 5]l Az + Bz - |
st. Ar+Bz=c¢

where p > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Ly(w,2,u) = f(2) + g(z) + u" (A + Bz —) + £|| Az + Bz — o

‘f - 511;1; Introduction to ADMM D0 O 21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £ =1,2,3,...:

1. Update z:
xp = argmin L, (z, zk—1, Uk—1)

‘f - ;nylr; Introduction to ADMM

22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £ =1,2,3,...:

1. Update z:
xp = argmin L, (z, zk—1, Uk—1)

2. Update z:
z = argmin L, (zk, 2, Uk—1)

‘f - ;nylr; Introduction to ADMM

22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £ =1,2,3,...:

1. Update z:
xp = argmin L, (z, zk—1, Uk—1)
2. Update z:
z = argmin L, (zk, 2, Uk—1)
3. Update u:

up, = ur—1 + p(Azk + Bz — ¢)

‘f - ;nylr; Introduction to ADMM

22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £ =1,2,3,...:

1. Update z:
xp = argmin L, (z, zk—1, Uk—1)
2. Update z:
z = argmin L, (zk, 2, Uk—1)
3. Update u:

up, = ur—1 + p(Azk + Bz — ¢)

‘f - ;nylr; Introduction to ADMM

22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £ =1,2,3,...:

1. Update z:
xp = argmin L, (z, zk—1, Uk—1)
2. Update z:
z = argmin L, (zk, 2, Uk—1)
3. Update u:

up, = ur—1 + p(Azk + Bz — ¢)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(z®),) = argmin L, (z, z, u* ")

‘f - §ny1r; Introduction to ADMM

22

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: Alternating Projections
Consider finding a point in the intersection of convex sets
UV CR™

mzin Iy (z) + Iv(x)

To transform this problem into ADMM form, we express it
as:

min Iy (z) + v (z) subjectto z—2z=0

2,2

Each ADMM cycle involves two projections:
T = arg mmin Py (2g—1 — Wk-1)
2K = argmzin Py (zr + wi—1)

Wg = Wg—1 + Tk — 2k

R Somin o duction to ADMM 00 23

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Sources

® Ryan Tibshirani. Convex Optimization 10-725

‘f - Pay"; Introduction to ADMM

24

https://www.stat.cmu.edu/~ryantibs/convexopt-F18/lectures/dual-ascent.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Introduction to dual methods
	Conjugate functions
	Dual ascent
	Augmented Lagrangian method
	Introduction to ADMM

