Automatic differentiation.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

＠dpiponi＠mathstodon．xyz
＠sigfpe
I think the first 40 years or so of automatic differentiation was largely people not using it because they didn＇t believe such an algorithm could possibly exist．

11：36 PM • Sep 17， 2019

159
わ13

Figure 1：When you got the idea

Figure 2: This is not autograd

Problem

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

Problem

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).

Problem

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.

Problem

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.
- That is why it would be beneficial to be able to calculate the gradient vector $\nabla_{w} L=\left(\frac{\partial L}{\partial w_{1}}, \ldots, \frac{\partial L}{\partial w_{d}}\right)^{T}$.

Problem

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.
- That is why it would be beneficial to be able to calculate the gradient vector $\nabla_{w} L=\left(\frac{\partial L}{\partial w_{1}}, \ldots, \frac{\partial L}{\partial w_{d}}\right)^{T}$.
- Typically, first-order methods perform much better in huge-scale optimization, while second-order methods require too much memory.

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for $N d$-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_{i} \in \mathbb{R}^{d}, i=1, \ldots, N$.

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for $N d$-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_{i} \in \mathbb{R}^{d}, i=1, \ldots, N$.

$$
L(W)=\sum_{i, j=1}^{N}\left(\left\|W_{i}-W_{j}\right\|_{2}^{2}-D_{i, j}\right)^{2} \rightarrow \min _{W \in \mathbb{R}^{N \times d}}
$$

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for $N d$-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_{i} \in \mathbb{R}^{d}, i=1, \ldots, N$.

$$
L(W)=\sum_{i, j=1}^{N}\left(\left\|W_{i}-W_{j}\right\|_{2}^{2}-D_{i, j}\right)^{2} \rightarrow \min _{W \in \mathbb{R}^{N \times d}}
$$

Link to a nice visualization \&, where one can see, that gradient-free methods handle this problem much slower, especially in higher dimensions.

Question

Is it somehow connected with PCA?

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

with the Gradient Descent (GD) algorithm:

$$
w_{k+1}=w_{k}-\alpha_{k} \nabla_{w} L\left(w_{k}\right)
$$

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

with the Gradient Descent (GD) algorithm:

$$
w_{k+1}=w_{k}-\alpha_{k} \nabla_{w} L\left(w_{k}\right)
$$

Is it possible to replace $\nabla_{w} L\left(w_{k}\right)$ using only zero-order information?

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

with the Gradient Descent (GD) algorithm:

$$
w_{k+1}=w_{k}-\alpha_{k} \nabla_{w} L\left(w_{k}\right)
$$

Is it possible to replace $\nabla_{w} L\left(w_{k}\right)$ using only zero-order information?
Yes, but at a cost.

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

with the Gradient Descent (GD) algorithm:

$$
w_{k+1}=w_{k}-\alpha_{k} \nabla_{w} L\left(w_{k}\right)
$$

Is it possible to replace $\nabla_{w} L\left(w_{k}\right)$ using only zero-order information?
Yes, but at a cost.
One can consider 2-point gradient estimator ${ }^{a} G$:

$$
G=d \frac{L(w+\varepsilon v)-L(w-\varepsilon v)}{2 \varepsilon} v
$$

where v is spherically symmetric.

[^0]
Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

$$
L(w) \rightarrow \min _{w \in \mathbb{R}^{d}}
$$

with the Gradient Descent (GD) algorithm:

$$
w_{k+1}=w_{k}-\alpha_{k} \nabla_{w} L\left(w_{k}\right)
$$

Is it possible to replace $\nabla_{w} L\left(w_{k}\right)$ using only zero-order information?
Yes, but at a cost.
One can consider 2-point gradient estimator ${ }^{a} G$:

$$
G=d \frac{L(w+\varepsilon v)-L(w-\varepsilon v)}{2 \varepsilon} v
$$

where v is spherically symmetric.

[^1]

Example: Gradient Descent without gradient

$$
w_{k+1}=w_{k}-\alpha_{k} G
$$

Example: Gradient Descent without gradient

$$
w_{k+1}=w_{k}-\alpha_{k} G
$$

One can also consider the idea of finite differences:

$$
G=\sum_{i=1}^{d} \frac{L\left(w+\varepsilon e_{i}\right)-L\left(w-\varepsilon e_{i}\right)}{2 \varepsilon} e_{i}
$$

Open In Colab

Trajectories with Contour Plot

Figure 4: "Illustration of finite differences estimator of Gradient Descent"

The curse of dimensionality for zero-order methods

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

The curse of dimensionality for zero-order methods

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { GD: } x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \quad \text { Zero order GD: } x_{k+1}=x_{k}-\alpha_{k} G,
\end{gathered}
$$

where G is a 2-point or multi-point estimator of the gradient.

The curse of dimensionality for zero-order methods

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

$$
\text { GD: } x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \quad \text { Zero order GD: } x_{k+1}=x_{k}-\alpha_{k} G
$$

where G is a 2-point or multi-point estimator of the gradient.

	$f(x)$ - smooth	$f(x)$ - smooth and convex	$f(x)$ - smooth and strongly convex				
GD	$\left\\|\nabla f\left(x_{k}\right)\right\\|^{2} \approx \mathcal{O}\left(\frac{1}{k}\right)$	$f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{k}\right)$	$\left\\|x_{k}-x^{*}\right\\|^{2} \approx \mathcal{O}\left(\left(1-\frac{\mu}{L}\right)^{k}\right)$				
Zero order GD	$\left\\|\nabla f\left(x_{k}\right)\right\\|^{2} \approx \mathcal{O}\left(\frac{n}{k}\right)$	$f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{n}{k}\right)$	$\left\\|x_{k}-x^{*}\right\\|^{2} \approx \mathcal{O}\left(\left(1-\frac{\mu}{n L}\right)^{k}\right)$				

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_{k}}(w) \approx \frac{L\left(w+\varepsilon e_{k}\right)-L(w)}{\varepsilon}, \quad e_{k}=\left(0, \ldots, \frac{1}{k}, \ldots, 0\right)
$$

[^2]
Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_{k}}(w) \approx \frac{L\left(w+\varepsilon e_{k}\right)-L(w)}{\varepsilon}, \quad e_{k}=\left(0, \ldots, \frac{1}{k}, \ldots, 0\right)
$$

Question

If the time needed for one calculation of $L(w)$ is T, what is the time needed for calculating $\nabla_{w} L$ with this approach?

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_{k}}(w) \approx \frac{L\left(w+\varepsilon e_{k}\right)-L(w)}{\varepsilon}, \quad e_{k}=\left(0, \ldots, \frac{1}{k}, \ldots, 0\right)
$$

Question

If the time needed for one calculation of $L(w)$ is T, what is the time needed for calculating $\nabla_{w} L$ with this approach?
Answer $2 d T$, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_{k}}(w) \approx \frac{L\left(w+\varepsilon e_{k}\right)-L(w)}{\varepsilon}, \quad e_{k}=\left(0, \ldots, \frac{1}{k}, \ldots, 0\right)
$$

Question

If the time needed for one calculation of $L(w)$ is T, what is the time needed for calculating $\nabla_{w} L$ with this approach?
Answer $2 d T$, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute $\nabla_{w} L$ in $\mathcal{O}(T)$ operations. ${ }^{1}$

[^3]
Forward mode automatic differentiation

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Forward mode automatic differentiation

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Let's draw a computational graph of this function:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function $L\left(w_{1}, w_{2}\right)$

Forward mode automatic differentiation

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Let's draw a computational graph of this function:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function $L\left(w_{1}, w_{2}\right)$
Let's go from the beginning of the graph to the end and calculate the derivative $\frac{\partial L}{\partial w_{1}}$.

Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

```
Function
w
```


Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
$w_{1}=w_{1}, w_{2}=w_{2}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial w_{1}}{\partial w_{1}}=1, \frac{\partial w_{2}}{\partial w_{1}}=0
\end{aligned}
$$

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
$v_{1}=\log w_{1}$

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
$v_{1}=\log w_{1}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial v_{1}}{\partial w_{1}}=\frac{\partial v_{1}}{\partial w_{1}} \frac{\partial w_{1}}{\partial w_{1}}=\frac{1}{w_{1}} 1
\end{aligned}
$$

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function

$v_{2}=w_{2} v_{1}$

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation
Function
$v_{2}=w_{2} v_{1}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial v_{2}}{\partial w_{1}}=\frac{\partial v_{2}}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{1}}+\frac{\partial v_{2}}{\partial w_{2}} \frac{\partial w_{2}}{\partial w_{1}}=w_{2} \frac{\partial v_{1}}{\partial w_{1}}+v_{1} \frac{\partial w_{2}}{\partial w_{1}}
\end{aligned}
$$

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
$v_{3}=\sqrt{v_{2}}$
Derivative

$$
\frac{\partial v_{3}}{\partial w_{1}}=\frac{\partial v_{3}}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{1}}=\frac{1}{2 \sqrt{v_{2}}} \frac{\partial v_{2}}{\partial w_{1}}
$$

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
 $L=v_{2}+v_{3}$

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation
Function
Derivative
$\frac{\partial L}{\partial w_{1}}=\frac{\partial L}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{1}}+\frac{\partial L}{\partial v_{3}} \frac{\partial v_{3}}{\partial w_{1}}=1 \frac{\partial v_{2}}{\partial w_{1}}+1 \frac{\partial v_{3}}{\partial w_{1}}$

Make the similar computations for $\frac{\partial L}{\partial w_{2}}$

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Figure 11: Illustration of computation graph of primitive arithmetic operations for the function $L\left(w_{1}, w_{2}\right)$

Forward mode automatic differentiation example

Figure 12: Illustration of forward mode automatic differentiation

Function
$w_{1}=w_{1}, w_{2}=w_{2}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial w_{1}}{\partial w_{2}}=0, \frac{\partial w_{2}}{\partial w_{2}}=1
\end{aligned}
$$

Forward mode automatic differentiation example

Figure 13: Illustration of forward mode automatic differentiation

Function $v_{1}=\log w_{1}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial v_{1}}{\partial w_{2}}=\frac{\partial v_{1}}{\partial w_{2}} \frac{\partial w_{2}}{\partial w_{2}}=0 \cdot 1
\end{aligned}
$$

Forward mode automatic differentiation example

Figure 14: Illustration of forward mode automatic differentiation
Function
$v_{2}=w_{2} v_{1}$

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\partial v_{2}}{\partial w_{2}}=\frac{\partial v_{2}}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{2}}+\frac{\partial v_{2}}{\partial w_{2}} \frac{\partial w_{2}}{\partial w_{2}}=w_{2} \frac{\partial v_{1}}{\partial w_{2}}+v_{1} \frac{\partial w_{2}}{\partial w_{2}}
\end{aligned}
$$

Forward mode automatic differentiation example

Figure 15: Illustration of forward mode automatic differentiation
Function
$v_{3}=\sqrt{v_{2}}$
Derivative

$$
\frac{\partial v_{3}}{\partial w_{2}}=\frac{\partial v_{3}}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{2}}=\frac{1}{2 \sqrt{v_{2}}} \frac{\partial v_{2}}{\partial w_{2}}
$$

Forward mode automatic differentiation example

Figure 16: Illustration of forward mode automatic differentiation
Function
Derivative
$\frac{\partial L}{\partial w_{2}}=\frac{\partial L}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{2}}+\frac{\partial L}{\partial v_{3}} \frac{\partial v_{3}}{\partial w_{2}}=1 \frac{\partial v_{2}}{\partial w_{2}}+1 \frac{\partial v_{3}}{\partial w_{2}}$

Forward mode automatic differentiation algorithm

 Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k},i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

Forward mode automatic differentiation algorithm

 Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k}, i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

Forward mode automatic differentiation algorithm

 Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k},i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k}, i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

- For $i=1, \ldots, N$:
- Compute v_{i} as a function of its parents (inputs) $x_{1}, \ldots, x_{t_{i}}$:

$$
v_{i}=v_{i}\left(x_{1}, \ldots, x_{t_{i}}\right)
$$

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k}, i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

- For $i=1, \ldots, N$:
- Compute v_{i} as a function of its parents (inputs) $x_{1}, \ldots, x_{t_{i}}$:

$$
v_{i}=v_{i}\left(x_{1}, \ldots, x_{t_{i}}\right)
$$

- Compute the derivative $\overline{v_{i}}$ using the forward chain rule:

$$
\overline{v_{i}}=\sum_{j=1}^{t_{i}} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial w_{k}}
$$

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k}, i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

- For $i=1, \ldots, N$:
- Compute v_{i} as a function of its parents (inputs) $x_{1}, \ldots, x_{t_{i}}$:

$$
v_{i}=v_{i}\left(x_{1}, \ldots, x_{t_{i}}\right)
$$

- Compute the derivative $\overline{v_{i}}$ using the forward chain rule:

$$
\overline{v_{i}}=\sum_{j=1}^{t_{i}} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial w_{k}}
$$

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_{k}, i.e. $\frac{\partial v_{N}}{\partial w_{k}}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial v_{i}}{\partial w_{k}}
$$

- For $i=1, \ldots, N$:
- Compute v_{i} as a function of its parents (inputs) $x_{1}, \ldots, x_{t_{i}}$:

$$
v_{i}=v_{i}\left(x_{1}, \ldots, x_{t_{i}}\right)
$$

- Compute the derivative $\overline{v_{i}}$ using the forward chain rule:

$$
\overline{v_{i}}=\sum_{j=1}^{t_{i}} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial w_{k}}
$$

Note, that this approach does not require storing all intermediate computations, but one can see, that for calculating the derivative $\frac{\partial L}{\partial w_{k}}$ we need $\mathcal{O}(T)$ operations. This means, that for the whole gradient, we need $d \mathcal{O}(T)$ operations, which is the same as for finite differences, but we do not have stability issues, or inaccuracies now (the formulas above are exact).

Figure 17: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_{k}.

There is another

Backward mode automatic differentiation

We will consider the same function with a computational graph:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function $L\left(w_{1}, w_{2}\right)$

Backward mode automatic differentiation

We will consider the same function with a computational graph:

$$
L\left(w_{1}, w_{2}\right)=w_{2} \log w_{1}+\sqrt{w_{2} \log w_{1}}
$$

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function $L\left(w_{1}, w_{2}\right)$

Assume, that we have some values of the parameters w_{1}, w_{2} and we have already performed a forward pass (i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved all intermediate values of v_{i}. Let's go from the end of the graph to the beginning and calculate the derivatives $\frac{\partial L}{\partial w_{1}}, \frac{\partial L}{\partial w_{2}}$:

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

$$
\frac{\partial L}{\partial L}=1
$$

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation
Derivatives

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation
Derivatives

$$
\begin{aligned}
\frac{\partial L}{\partial v_{3}} & =\frac{\partial L}{\partial L} \frac{\partial L}{\partial v_{3}} \\
& =\frac{\partial L}{\partial L} 1
\end{aligned}
$$

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

[^4]
Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation
Derivatives

$$
\begin{aligned}
\frac{\partial L}{\partial v_{2}} & =\frac{\partial L}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{2}}+\frac{\partial L}{\partial L} \frac{\partial L}{\partial v_{2}} \\
& =\frac{\partial L}{\partial v_{3}} \frac{1}{2 \sqrt{v_{2}}}+\frac{\partial L}{\partial L} 1
\end{aligned}
$$

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation
Derivatives

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation
Derivatives

$$
\begin{aligned}
\frac{\partial L}{\partial v_{1}} & =\frac{\partial L}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{1}} \\
& =\frac{\partial L}{\partial v_{2}} w_{2}
\end{aligned}
$$

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation
Derivatives

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation
Derivatives

$$
\frac{\partial L}{\partial w_{1}}=\frac{\partial L}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{1}}=\frac{\partial L}{\partial v_{1}} \frac{1}{w_{1}} \quad \quad \frac{\partial L}{\partial w_{2}}=\frac{\partial L}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{2}}=\frac{\partial L}{\partial v_{1}} v_{1}
$$

Backward (reverse) mode automatic differentiation

Question
Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient $\nabla_{w} L$. Is it a free lunch? What is the cost of acceleration?

Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient $\nabla_{w} L$. Is it a free lunch? What is the cost of acceleration?
Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which involves necessary recomputations of some intermediate values. This could significantly reduce the memory footprint of the large machine-learning model.

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,
i.e. $\nabla_{w} v_{N}=\left(\frac{\partial v_{N}}{\partial w_{1}}, \ldots, \frac{\partial v_{N}}{\partial w_{d}}\right)^{T}$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}=\frac{\partial v_{N}}{\partial v_{i}}
$$

Figure 24: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_{i}.

- FORWARD PASS

For $i=1, \ldots, N$:

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,
i.e. $\nabla_{w} v_{N}=\left(\frac{\partial v_{N}}{\partial w_{1}}, \ldots, \frac{\partial v_{N}}{\partial w_{d}}\right)^{T}$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}=\frac{\partial v_{N}}{\partial v_{i}}
$$

Figure 24: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_{i}.

- FORWARD PASS

For $i=1, \ldots, N$:

- Compute and store the values of v_{i} as a function of its parents (inputs)

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,
i.e. $\nabla_{w} v_{N}=\left(\frac{\partial v_{N}}{\partial w_{1}}, \ldots, \frac{\partial v_{N}}{\partial w_{d}}\right)^{T}$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}=\frac{\partial v_{N}}{\partial v_{i}}
$$

Figure 24: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_{i}.

- FORWARD PASS

For $i=1, \ldots, N$:

- Compute and store the values of v_{i} as a function of its parents (inputs)

- BACKWARD PASS

For $i=N, \ldots, 1$:

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_{i}, i \in[1 ; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,
i.e. $\nabla_{w} v_{N}=\left(\frac{\partial v_{N}}{\partial w_{1}}, \ldots, \frac{\partial v_{N}}{\partial w_{d}}\right)^{T}$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}=\frac{\partial v_{N}}{\partial v_{i}}
$$

Figure 24: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_{i}.

- FORWARD PASS

For $i=1, \ldots, N$:

- Compute and store the values of v_{i} as a function of its parents (inputs)

- BACKWARD PASS

For $i=N, \ldots, 1$:

- Compute the derivative $\overline{v_{i}}$ using the backward chain rule and information from all of its children (outputs) $\left(x_{1}, \ldots, x_{t_{i}}\right)$:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}=\sum_{j=1}^{t_{i}} \frac{\partial L}{\partial x_{j}} \frac{\partial x_{j}}{\partial v_{i}}
$$

Choose your fighter

Figure 25: Which mode would you choose for calculating gradients there?

Choose your fighter

Question

Which of the AD modes would you choose (forward/reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian

$$
J=\left\{\frac{\partial L_{i}}{\partial w_{j}}\right\}_{i, j}
$$

Answer Note, that the reverse mode computational time is proportional to the number of outputs here, while the forward mode works proportionally to the number of inputs there. This is why it would be a good idea to consider the forward mode AD.

Figure 25: Which mode would you choose for calculating gradients there?

Choose your fighter

Comparison of Forward Mode and Reverse Mode AD. $f(x)=A x$

Figure 26: \& This graph nicely illustrates the idea of choice between the modes. The $n=100$ dimension is fixed and the graph presents the time needed for Jacobian calculation w.r.t. x for $f(x)=A x$

Choose your fighter

Figure 27: Which mode would you choose for calculating gradients there?

Choose your fighter

Question

Which of the AD modes would you choose (forward/reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J=\left\{\frac{\partial L_{i}}{\partial w_{j}}\right\}_{i, j}$. Note, that G is an arbitrary computational graph

Answer It is generally impossible to say it without some knowledge about the specific structure of the graph G. Note, that there are also plenty of advanced approaches to mix forward and reverse mode AD, based on the specific G structure.

Figure 27: Which mode would you choose for calculating gradients there?

Feedforward Architecture

FORWARD

- $v_{0}=x$ typically we have a batch of data x here as an input.

BACKWARD

Figure 28: Feedforward neural network architecture

Feedforward Architecture

FORWARD

- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:

Figure 28: Feedforward neural network architecture

Feedforward Architecture

 FORWARD- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.

BACKWARD

Figure 28: Feedforward neural network architecture

Feedforward Architecture

 FORWARD- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.
- $L=L\left(v_{t}\right)$ - calculate the loss function. BACKWARD

Figure 28: Feedforward neural network architecture

Feedforward Architecture

 FORWARD- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.
- $L=L\left(v_{t}\right)$ - calculate the loss function.

BACKWARD

- $v_{t+1}=L, \frac{\partial L}{\partial L}=1$

Input

$$
b \times n_{k}
$$

$$
b \times n_{k-1}
$$

$n_{k-1} \times n_{k}$

Figure 28: Feedforward neural network architecture

Feedforward Architecture

 FORWARD- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.
- $L=L\left(v_{t}\right)$ - calculate the loss function.

BACKWARD

- $v_{t+1}=L, \frac{\partial L}{\partial L}=1$
- For $k=t, t-1, \ldots, 1$:

Input

$$
b \times n_{k}
$$

$$
b \times n_{k-1}
$$

$n_{k-1} \times n_{k}$

Figure 28: Feedforward neural network architecture

Feedforward Architecture

 FORWARD- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.
- $L=L\left(v_{t}\right)$ - calculate the loss function.

BACKWARD

- $v_{t+1}=L, \frac{\partial L}{\partial L}=1$
- For $k=t, t-1, \ldots, 1$:
- $\frac{\partial L}{\partial v_{k}}=\frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_{k}}$ $b \times n_{k} \quad b \times n_{k+1} n_{k+1} \times n_{k}$

Weights

Input

$$
b \times n_{k}
$$

$$
b \times n_{k-1}
$$

$$
n_{k-1} \times n_{k}
$$

Figure 28: Feedforward neural network architecture

Feedforward Architecture FORWARD

- $v_{0}=x$ typically we have a batch of data x here as an input.
- For $k=1, \ldots, t-1, t$:
- $v_{k}=\sigma\left(v_{k-1} w_{k}\right)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point $b=1$). While the weight matrix w_{k} of a k layer has a shape $n_{k-1} \times n_{k}$, where n_{k} is the dimension of an inner representation of the data.
- $L=L\left(v_{t}\right)$ - calculate the loss function.

BACKWARD

- $v_{t+1}=L, \frac{\partial L}{\partial L}=1$
- For $k=t, t-1, \ldots, 1$:
- $\frac{\partial L}{\partial v_{k}}=\frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_{k}}$

$$
b \times n_{k} \quad b \times n_{k+1} n_{k+1} \times n_{k}
$$

- $\frac{\partial L}{\partial w_{k}}=\frac{\partial L}{\partial v_{k+1}} \cdot \frac{\partial v_{k+1}}{\partial w_{k}}$ $b \times n_{k-1} \cdot n_{k} \quad b \times n_{k+1} \quad n_{k+1} \times n_{k-1} \cdot n_{k}$

Input

Figure 28: Feedforward neural network architecture

Gradient propagation through the linear least squares

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system $A x=b$, namely one can write down an analytical solution $x=A^{-1} b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass.

Figure 29: x could be found as a solution of linear system

Gradient propagation through the linear least squares

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system $A x=b$, namely one can write down an analytical solution $x=A^{-1} b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on the parametrization:

$$
d L=\left\langle\frac{\partial L}{\partial x}, d x\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle
$$

Figure 29: x could be found as a solution of linear system

Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear system

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system $A x=b$, namely one can write down an analytical solution $x=A^{-1} b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on the parametrization:

$$
d L=\left\langle\frac{\partial L}{\partial x}, d x\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle
$$

Given the linear system, we have:

$$
\begin{aligned}
A x & =b \\
d A x+A d x=d b & \rightarrow d x=A^{-1}(d b-d A x)
\end{aligned}
$$

Gradient propagation through the linear least squares

The straightforward substitution gives us:

$$
\left\langle\frac{\partial L}{\partial x}, A^{-1}(d b-d A x)\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle
$$

Figure 30: x could be found as a solution of linear system

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear system

Gradient propagation through the linear least squares

The straightforward substitution gives us:

$$
\begin{gathered}
\left\langle\frac{\partial L}{\partial x}, A^{-1}(d b-d A x)\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle \\
\left\langle-A^{-T} \frac{\partial L}{\partial x} x^{T}, d A\right\rangle+\left\langle A^{-T} \frac{\partial L}{\partial x}, d b\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle
\end{gathered}
$$

Therefore:

$$
\frac{\partial L}{\partial A}=-A^{-T} \frac{\partial L}{\partial x} x^{T} \quad \frac{\partial L}{\partial b}=A^{-T} \frac{\partial L}{\partial x}
$$

Figure 30: x could be found as a solution of linear system

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear system

The straightforward substitution gives us:

$$
\begin{gathered}
\left\langle\frac{\partial L}{\partial x}, A^{-1}(d b-d A x)\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle \\
\left\langle-A^{-T} \frac{\partial L}{\partial x} x^{T}, d A\right\rangle+\left\langle A^{-T} \frac{\partial L}{\partial x}, d b\right\rangle=\left\langle\frac{\partial L}{\partial A}, d A\right\rangle+\left\langle\frac{\partial L}{\partial b}, d b\right\rangle
\end{gathered}
$$

Therefore:

$$
\frac{\partial L}{\partial A}=-A^{-T} \frac{\partial L}{\partial x} x^{T} \quad \frac{\partial L}{\partial b}=A^{-T} \frac{\partial L}{\partial x}
$$

It is interesting, that the most computationally intensive part here is the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes the backward pass even cheaper.

Gradient propagation through the SVD

Suppose, we have the rectangular matrix $W \in \mathbb{R}^{m \times n}$, which has a singular value decomposition:

$$
W=U \Sigma V^{T}, \quad U^{T} U=I, \quad V^{T} V=I, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\min (m, n)}\right)
$$

1. Similarly to the previous example:

$$
\begin{aligned}
W & =U \Sigma V^{T} \\
d W & =d U \Sigma V^{T}+U d \Sigma V^{T}+U \Sigma d V^{T} \\
U^{T} d W V & =U^{T} d U \Sigma V^{T} V+U^{T} U d \Sigma V^{T} V+U^{T} U \Sigma d V^{T} V \\
U^{T} d W V & =U^{T} d U \Sigma+d \Sigma+\Sigma d V^{T} V
\end{aligned}
$$

Gradient propagation through the SVD

2. Note, that $U^{T} U=I \rightarrow d U^{T} U+U^{T} d U=0$. But also $d U^{T} U=\left(U^{T} d U\right)^{T}$, which actually involves, that the matrix $U^{T} d U$ is antisymmetric:

$$
\left(U^{T} d U\right)^{T}+U^{T} d U=0 \quad \rightarrow \quad \operatorname{diag}\left(U^{T} d U\right)=(0, \ldots, 0)
$$

The same logic could be applied to the matrix V and

$$
\operatorname{diag}\left(d V^{T} V\right)=(0, \ldots, 0)
$$

Gradient propagation through the SVD

2. Note, that $U^{T} U=I \rightarrow d U^{T} U+U^{T} d U=0$. But also $d U^{T} U=\left(U^{T} d U\right)^{T}$, which actually involves, that the matrix $U^{T} d U$ is antisymmetric:

$$
\left(U^{T} d U\right)^{T}+U^{T} d U=0 \quad \rightarrow \quad \operatorname{diag}\left(U^{T} d U\right)=(0, \ldots, 0)
$$

The same logic could be applied to the matrix V and

$$
\operatorname{diag}\left(d V^{T} V\right)=(0, \ldots, 0)
$$

3. At the same time, the matrix $d \Sigma$ is diagonal, which means (look at the 1.) that

$$
\operatorname{diag}\left(U^{T} d W V\right)=d \Sigma
$$

Here on both sides, we have diagonal matrices.

Gradient propagation through the SVD

4. Now, we can decompose the differential of the loss function as a function of Σ - such problems arise in ML problems, where we need to restrict the matrix rank:

$$
\begin{aligned}
d L & =\left\langle\frac{\partial L}{\partial \Sigma}, d \Sigma\right\rangle \\
& =\left\langle\frac{\partial L}{\partial \Sigma}, \operatorname{diag}\left(U^{T} d W V\right)\right\rangle \\
& =\operatorname{tr}\left(\frac{\partial L^{T}}{\partial \Sigma} \operatorname{diag}\left(U^{T} d W V\right)\right)
\end{aligned}
$$

Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the diagonal part of the matrix will be equal to the trace of the whole matrix:

$$
\begin{aligned}
d L & =\operatorname{tr}\left({\frac{\partial L^{T}}{\partial \Sigma}}^{\left.\operatorname{diag}\left(U^{T} d W V\right)\right)}\right. \\
& =\operatorname{tr}\left(\frac{\partial L^{T}}{\partial \Sigma} U^{T} d W V\right) \\
& =\left\langle\frac{\partial L}{\partial \Sigma}, U^{T} d W V\right\rangle \\
& =\left\langle U \frac{\partial L}{\partial \Sigma} V^{T}, d W\right\rangle
\end{aligned}
$$

Gradient propagation through the SVD

6. Finally, using another parametrization of the differential

$$
\begin{gathered}
\left\langle U \frac{\partial L}{\partial \Sigma} V^{T}, d W\right\rangle=\left\langle\frac{\partial L}{\partial W}, d W\right\rangle \\
\frac{\partial L}{\partial W}=U \frac{\partial L}{\partial \Sigma} V^{T}
\end{gathered}
$$

This nice result allows us to connect the gradients $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial \Sigma}$.

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian. However, when the dimension of the problem is large it is challenging. For a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Hessian at a point $x \in \mathbb{R}^{n}$ is written as $\nabla^{2} f(x)$. A Hessian-vector product function is then able to evaluate

$$
v \mapsto \nabla^{2} f(x) \cdot v
$$

for any vector $v \in \mathbb{R}^{n}$. We have to use the identity

$$
\nabla^{2} f(x) v=\nabla[x \mapsto \nabla f(x) \cdot v]=\nabla g(x)
$$

where $g(x)=\nabla f(x)^{T} \cdot v$ is a new vector-valued function that dots the gradient of f at x with the vector v.

```
import jax.numpy as jnp
```

def $\operatorname{hvp}(f, x, v):$
return $\operatorname{grad}(\operatorname{lambda} x: j n p . v d o t(\operatorname{grad}(f)(x), v))(x)$

Hutchinson Trace Estimation ${ }^{2}$

This example illustrates the estimation the Hessian trace of a neural network using Hutchinson's method, which is an algorithm to obtain such an estimate from matrix-vector products:
Let $X \in \mathbb{R}^{d \times d}$ and $v \in \mathbb{R}^{d}$ be a random vector such that $\mathbb{E}\left[v v^{T}\right]=I$. Then,

$$
\operatorname{Tr}(X)=\mathbb{E}\left[v^{T} X v\right]=\frac{1}{V} \sum_{i=1}^{V} v_{i}^{T} X v_{i}
$$

Figure 31: Source

[^5]
Activation checkpointing

The animated visualization of the above approaches \boldsymbol{Q} An example of using a gradient checkpointing $(\boldsymbol{?}$

What automatic differentiation (AD) is NOT:

- AD is not a finite differences

DIFFERENTIATION

Figure 32: Different approaches for taking derivatives

What automatic differentiation (AD) is NOT:

- $A D$ is not a finite differences
- AD is not a symbolic derivative

DIFFERENTIATION

Figure 32: Different approaches for taking derivatives

What automatic differentiation (AD) is NOT:

- $A D$ is not a finite differences
- $A D$ is not a symbolic derivative
- $A D$ is not just the chain rule

DIFFERENTIATION
SYMBOLIC
SLOW
NUMERICAL
$\substack{\text { STABLE } \\ \text { MANUAL } \\ \text { (imPASACTICAL) } \\ \text { UNSTABLE }}$
AUTOMATIC

Figure 32: Different approaches for taking derivatives

What automatic differentiation (AD) is NOT:

- $A D$ is not a finite differences
- $A D$ is not a symbolic derivative
- $A D$ is not just the chain rule
- $A D$ is not just backpropagation

DIFFERENTIATION

Figure 32: Different approaches for taking derivatives

What automatic differentiation (AD) is NOT:

- AD is not a finite differences
- $A D$ is not a symbolic derivative
- $A D$ is not just the chain rule
- $A D$ is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable

DIFFERENTIATION

Figure 32: Different approaches for taking derivatives

What automatic differentiation (AD) is NOT:

- AD is not a finite differences
- AD is not a symbolic derivative
- $A D$ is not just the chain rule
- AD is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable
- AD (reverse mode) is memory inefficient (you need to store all intermediate computations from the forward pass).

DIFFERENTIATION

Figure 32: Different approaches for taking derivatives

Code

Open In Colab

[^0]: ${ }^{a}$ I suggest a nice presentation about gradient-free methods

[^1]: ${ }^{a}$ I suggest a nice presentation about gradient-free methods
 Figure 3: "Illustration of two-point estimator of Gradient Descent"

[^2]: ${ }^{1}$ Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

[^3]: ${ }^{1}$ Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

[^4]: Derivatives

[^5]: ${ }^{2}$ A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990 $f \rightarrow \min _{x, y, z} \quad$ Automatic differentiation

