Convexity: convex sets, convex functions. Polyak - Lojasiewicz Condition.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

Affine set

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{\ltimes}. Then the line passing through them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in \mathbb{R}
$$

The set A is called affine if for any x_{1}, x_{2} from A the line passing through them also lies in A, i.e.

$$
\forall \theta \in \mathbb{R}, \forall x_{1}, x_{2} \in A: \theta x_{1}+(1-\theta) x_{2} \in A
$$

Example

- \mathbb{R}^{n} is an affine set.

Figure 1: Illustration of a line between two vectors x_{1} and x_{2}

Affine set

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{\ltimes}. Then the line passing through them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in \mathbb{R}
$$

The set A is called affine if for any x_{1}, x_{2} from A the line passing through them also lies in A, i.e.

$$
\forall \theta \in \mathbb{R}, \forall x_{1}, x_{2} \in A: \theta x_{1}+(1-\theta) x_{2} \in A
$$

Example

- \mathbb{R}^{n} is an affine set.
- The set of solutions $\{x \mid \mathbf{A} x=\mathbf{b}\}$ is also an affine set.

Figure 1: Illustration of a line between two vectors x_{1} and x_{2}

Cone

A non-empty set S is called a cone, if:

$$
\forall x \in S, \theta \geq 0 \quad \rightarrow \quad \theta x \in S
$$

For any point in cone it also contains beam through this point.

Convex cone

The set S is called a convex cone, if:
$\forall x_{1}, x_{2} \in S, \theta_{1}, \theta_{2} \geq 0 \quad \rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in S$
Convex cone is just like cone, but it is also convex.

Example

- \mathbb{R}^{n}

Convex cone: set that contains all conic combinations of points in the set

Convex cone

The set S is called a convex cone, if:
$\forall x_{1}, x_{2} \in S, \theta_{1}, \theta_{2} \geq 0 \quad \rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in S$
Convex cone is just like cone, but it is also convex.

Example

- \mathbb{R}^{n}
- Affine sets, containing 0

Convex cone: set that contains all conic combinations of points in the set

Convex cone

The set S is called a convex cone, if:
$\forall x_{1}, x_{2} \in S, \theta_{1}, \theta_{2} \geq 0 \quad \rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in S$
Convex cone is just like cone, but it is also convex.

Example

- \mathbb{R}^{n}
- Affine sets, containing 0
- Ray

Convex cone: set that contains all conic combinations of points in the set

Convex cone

The set S is called a convex cone, if:
$\forall x_{1}, x_{2} \in S, \theta_{1}, \theta_{2} \geq 0 \quad \rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in S$
Convex cone is just like cone, but it is also convex.

Example

- \mathbb{R}^{n}
- Affine sets, containing 0
- Ray
- \mathbf{S}_{+}^{n} - the set of symmetric positive semi-definite matrices

Convex cone: set that contains all conic combinations of points in the set

Line segment

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{n}.
Then the line segment between them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in[0,1]
$$

Convex set contains line segment between any two points in the set.

Convex set

The set S is called convex if for any x_{1}, x_{2} from S the line segment between them also lies in S, i.e.

$$
\forall \theta \in[0,1], \forall x_{1}, x_{2} \in S: \theta x_{1}+(1-\theta) x_{2} \in S
$$

Example

An empty set and a set from a single vector are convex by definition.

Example

Any affine set, a ray, a line segment - they all are convex sets.

Figure 5: Top: examples of convex sets. Bottom: examples of non-convex sets.

Convex combination

Let $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the point $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called the convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$ if $\sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0$.

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0\right\}
$$

- The set $\operatorname{conv}(S)$ is the smallest convex set containing S.

Figure 6: Top: convex hulls of the convex sets. Bottom: convex hull of the non-convex sets.

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0\right\}
$$

- The set $\operatorname{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S=\boldsymbol{\operatorname { c o n v }}(S)$.

Figure 6: Top: convex hulls of the convex sets. Bottom: convex hull of the non-convex sets.

Minkowski addition

The Minkowski sum of two sets of vectors S_{1} and S_{2} in Euclidean space is formed by adding each vector in S_{1} to each vector in S_{2}.

$$
S_{1}+S_{2}=\left\{\mathbf{s}_{\mathbf{1}}+\mathbf{s}_{\mathbf{2}} \mid \mathbf{s}_{\mathbf{1}} \in S_{1}, \mathbf{s}_{\mathbf{2}} \in S_{2}\right\}
$$

Similarly, one can define a linear combination of the sets.

Example

We will work in the \mathbb{R}^{2} space. Let's define:

$$
S_{1}:=\left\{x \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

This is a unit circle centered at the origin. And:

$$
S_{2}:=\left\{x \in \mathbb{R}^{2}:-4 \leq x_{1} \leq-1,-3 \leq x_{2} \leq-1\right\}
$$

This represents a rectangle. The sum of the sets S_{1} and S_{2} will form an enlarged rectangle S_{2} with rounded corners. The resulting set will be convex.

Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.

Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.
- Show that S is derived from simple convex sets using operations that preserve convexity.

Finding convexity by definition

$$
x_{1}, x_{2} \in S, 0 \leq \theta \leq 1 \quad \rightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in S
$$

Example

Prove, that ball in \mathbb{R}^{n} (i.e. the following set $\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\| \leq r\right\}$) - is convex.

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$
- Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$
- Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$
- A set of points closer to a given point than a given set that does not contain a point, $\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\}$

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$
- Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$
- A set of points closer to a given point than a given set that does not contain a point, $\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\}$
- A set of points, which are closer to one set than another, $\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^{n}\right\}$

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$
- Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$
- A set of points closer to a given point than a given set that does not contain a point, $\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\}$
- A set of points, which are closer to one set than another, $\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^{n}\right\}$
- A set of points, $\left\{x \in \mathbb{R}^{n} \mid x+X \subseteq S\right\}$, where $S \subseteq \mathbb{R}^{n}$ is convex and $X \subseteq \mathbb{R}^{n}$ is arbitrary.

Exercises

Which of the sets are convex:

- Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$
- Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$
- Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$
- A set of points closer to a given point than a given set that does not contain a point, $\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\}$
- A set of points, which are closer to one set than another, $\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^{n}\right\}$
- A set of points, $\left\{x \in \mathbb{R}^{n} \mid x+X \subseteq S\right\}$, where $S \subseteq \mathbb{R}^{n}$ is convex and $X \subseteq \mathbb{R}^{n}$ is arbitrary.
- A set of points whose distance to a given point does not exceed a certain part of the distance to another given point is $\left\{x \in \mathbb{R}^{n} \mid\|x-a\|_{2} \leq \theta\|x-b\|_{2}, a, b \in \mathbb{R}^{n}, 0 \leq 1\right\}$

Operations, that preserve convexity

The linear combination of convex sets is convex Let there be 2 convex sets S_{x}, S_{y}, let the set

$$
S=\left\{s \mid s=c_{1} x+c_{2} y, x \in S_{x}, y \in S_{y}, c_{1}, c_{2} \in \mathbb{R}\right\}
$$

Take two points from S : $s_{1}=c_{1} x_{1}+c_{2} y_{1}, s_{2}=c_{1} x_{2}+c_{2} y_{2}$ and prove that the segment between them $\theta s_{1}+(1-\theta) s_{2}, \theta \in[0,1]$ also belongs to S

$$
\begin{gathered}
\theta s_{1}+(1-\theta) s_{2} \\
\theta\left(c_{1} x_{1}+c_{2} y_{1}\right)+(1-\theta)\left(c_{1} x_{2}+c_{2} y_{2}\right) \\
c_{1}\left(\theta x_{1}+(1-\theta) x_{2}\right)+c_{2}\left(\theta y_{1}+(1-\theta) y_{2}\right) \\
c_{1} x+c_{2} y \in S
\end{gathered}
$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

Figure 8: Intersection of halfplanes

The image of the convex set under affine mapping is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \rightarrow f(S)=\{f(x) \mid x \in S\} \text { convex } \quad(f(x)=\mathbf{A} x+\mathbf{b})
$$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\ldots+x_{m} A_{m} \preceq B\right\}$. Here $A_{i}, B \in \mathbf{S}^{p}$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$
S \subseteq \mathbb{R}^{m} \text { convex } \rightarrow f^{-1}(S)=\left\{x \in \mathbb{R}^{n} \mid f(x) \in S\right\} \text { convex }(f(x)=\mathbf{A} x+\mathbf{b})
$$

Example

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}\left(x=a_{i}\right)=p_{i}$, where $i=1, \ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^{n}$ belongs to the probabilistic simplex, i.e.

$$
P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}=\left\{p \mid p_{1}+\ldots+p_{n}=1, p_{i} \geq 0\right\}
$$

Determine if the following sets of p are convex:

- $\mathbb{P}(x>\alpha) \leq \beta$

Example

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}\left(x=a_{i}\right)=p_{i}$, where $i=1, \ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^{n}$ belongs to the probabilistic simplex, i.e.

$$
P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}=\left\{p \mid p_{1}+\ldots+p_{n}=1, p_{i} \geq 0\right\}
$$

Determine if the following sets of p are convex:

- $\mathbb{P}(x>\alpha) \leq \beta$
- $\mathbb{E}\left|x^{201}\right| \leq \alpha \mathbb{E}|x|$

Example

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}\left(x=a_{i}\right)=p_{i}$, where $i=1, \ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^{n}$ belongs to the probabilistic simplex, i.e.

$$
P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}=\left\{p \mid p_{1}+\ldots+p_{n}=1, p_{i} \geq 0\right\}
$$

Determine if the following sets of p are convex:

- $\mathbb{P}(x>\alpha) \leq \beta$
- $\mathbb{E}\left|x^{201}\right| \leq \alpha \mathbb{E}|x|$
- $\mathbb{E}\left|x^{2}\right| \geq \alpha \mathbb{V} x \geq \alpha$

Jensen's inequality

 The function $f(x)$, which is defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called convex on S, if:
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda$
for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$. If the above inequality holds as strict inequality $x_{1} \neq x_{2}$ and $0<\lambda<1$, then the function is called strictly convex on S.

Convex

Figure 9: Difference between convex and non-convex function

Jensen's inequality

Theorem

Let $f(x)$ be a convex function on a convex set $X \subseteq \mathbb{R}^{n}$ and let $x_{i} \in X, 1 \leq i \leq m$, be arbitrary points from X. Then

$$
f\left(\sum_{i=1}^{m} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right)
$$

for any $\lambda=\left[\lambda_{1}, \ldots, \lambda_{m}\right] \in \Delta_{m}$ - probability simplex.

Proof

1. First, note that the point $\sum_{i=1}^{m} \lambda_{i} x_{i}$ as a convex combination of points from the convex set X belongs to X.

Jensen's inequality

Theorem

Let $f(x)$ be a convex function on a convex set $X \subseteq \mathbb{R}^{n}$ and let $x_{i} \in X, 1 \leq i \leq m$, be arbitrary points from X. Then

$$
f\left(\sum_{i=1}^{m} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right)
$$

for any $\lambda=\left[\lambda_{1}, \ldots, \lambda_{m}\right] \in \Delta_{m}$ - probability simplex.

Proof

1. First, note that the point $\sum_{i=1}^{m} \lambda_{i} x_{i}$ as a convex combination of points from the convex set X belongs to X.
2. We will prove this by induction. For $m=1$, the statement is obviously true, and for $m=2$, it follows from the definition of a convex function.

Jensen's inequality

3. Assume it is true for all m up to $m=k$, and we will prove it for $m=k+1$. Let $\lambda \in \Delta k+1$ and

$$
x=\sum_{i=1}^{k+1} \lambda_{i} x_{i}=\sum_{i=1}^{k} \lambda_{i} x_{i}+\lambda_{k+1} x_{k+1}
$$

Assuming $0<\lambda_{k+1}<1$, as otherwise, it reduces to previously considered cases, we have

$$
x=\lambda_{k+1} x_{k+1}+\left(1-\lambda_{k+1}\right) \bar{x}
$$

where $\bar{x}=\sum_{i=1}^{k} \gamma_{i} x_{i}$ and $\gamma_{i}=\frac{\lambda_{i}}{1-\lambda_{k+1}} \geq 0,1 \leq i \leq k$.

Jensen's inequality

3. Assume it is true for all m up to $m=k$, and we will prove it for $m=k+1$. Let $\lambda \in \Delta k+1$ and

$$
x=\sum_{i=1}^{k+1} \lambda_{i} x_{i}=\sum_{i=1}^{k} \lambda_{i} x_{i}+\lambda_{k+1} x_{k+1} .
$$

Assuming $0<\lambda_{k+1}<1$, as otherwise, it reduces to previously considered cases, we have

$$
x=\lambda_{k+1} x_{k+1}+\left(1-\lambda_{k+1}\right) \bar{x}
$$

where $\bar{x}=\sum_{i=1}^{k} \gamma_{i} x_{i}$ and $\gamma_{i}=\frac{\lambda_{i}}{1-\lambda_{k+1}} \geq 0,1 \leq i \leq k$.
4. Since $\lambda \in \Delta_{k+1}$, then $\gamma=\left[\gamma_{1}, \ldots, \gamma_{k}\right] \in \Delta_{k}$. Therefore $\bar{x} \in X$ and by the convexity of $f(x)$ and the induction hypothesis:

$$
f\left(\sum_{i=1}^{k+1} \lambda_{i} x_{i}\right)=f\left(\lambda_{k+1} x_{k+1}+\left(1-\lambda_{k+1}\right) \bar{x}\right) \leq \lambda_{k+1} f\left(x_{k+1}\right)+\left(1-\lambda_{k+1}\right) f(\bar{x}) \leq \sum_{i=1}^{k+1} \lambda_{i} f\left(x_{i}\right)
$$

Thus, initial inequality is satisfied for $m=k+1$ as well.

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, x \in \mathbb{R}_{++}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, x \in \mathbb{R}_{++}$
- $f(x)=x \ln x, x \in \mathbb{R}_{++}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, x \in \mathbb{R}_{++}$
- $f(x)=x \ln x, x \in \mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, x \in \mathbb{R}^{n}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, x \in \mathbb{R}_{++}$
- $f(x)=x \ln x, x \in \mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, x \in \mathbb{R}^{n}$
- $f(X)=\lambda_{\max }(X), X=X^{T}$

Examples of convex functions

- $f(x)=x^{p}, p>1, x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, x \in \mathbb{R}_{++}$
- $f(x)=x \ln x, x \in \mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, x \in \mathbb{R}^{n}$
- $f(X)=\lambda_{\max }(X), X=X^{T}$
- $f(X)=-\log \operatorname{det} X, X \in S_{++}^{n}$

Epigraph

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\text { epi } f=\{[x, \mu] \in S \times \mathbb{R}: f(x) \leq \mu\}
$$

$$
f(x)
$$

$$
\operatorname{Epi} f
$$

is called epigraph of the function $f(x)$.
Convexity of the epigraph is the convexity of the function

For a function $f(x)$, defined on a convex set X, to be convex on X, it is necessary and sufficient that the epigraph of f is a convex set.

Figure 10: Epigraph of a function

Convexity of the epigraph is the convexity of the function

1. Necessity: Assume $f(x)$ is convex on X. Take any two arbitrary points $\left[x_{1}, \mu_{1}\right] \in \operatorname{epi} f$ and $\left[x_{2}, \mu_{2}\right] \in \operatorname{epi} f$. Also take $0 \leq \lambda \leq 1$ and denote $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}, \mu_{\lambda}=\lambda \mu_{1}+(1-\lambda) \mu_{2}$. Then,

$$
\lambda\left[\begin{array}{l}
x_{1} \\
\mu_{1}
\end{array}\right]+(1-\lambda)\left[\begin{array}{l}
x_{2} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{\lambda} \\
\mu_{\lambda}
\end{array}\right] .
$$

From the convexity of the set X, it follows that $x_{\lambda} \in X$. Moreover, since $f(x)$ is a convex function,

$$
f\left(x_{\lambda}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda \mu_{1}+(1-\lambda) \mu_{2}=\mu_{\lambda}
$$

Inequality above indicates that $\left[\begin{array}{l}x_{\lambda} \\ \mu_{\lambda}\end{array}\right] \in$ epi f. Thus, the epigraph of f is a convex set.

Convexity of the epigraph is the convexity of the function

1. Necessity: Assume $f(x)$ is convex on X. Take any two arbitrary points $\left[x_{1}, \mu_{1}\right] \in \operatorname{epi} f$ and $\left[x_{2}, \mu_{2}\right] \in \operatorname{epi} f$. Also take $0 \leq \lambda \leq 1$ and denote $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}, \mu_{\lambda}=\lambda \mu_{1}+(1-\lambda) \mu_{2}$. Then,

$$
\lambda\left[\begin{array}{l}
x_{1} \\
\mu_{1}
\end{array}\right]+(1-\lambda)\left[\begin{array}{l}
x_{2} \\
\mu_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{\lambda} \\
\mu_{\lambda}
\end{array}\right] .
$$

From the convexity of the set X, it follows that $x_{\lambda} \in X$. Moreover, since $f(x)$ is a convex function,

$$
f\left(x_{\lambda}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda \mu_{1}+(1-\lambda) \mu_{2}=\mu_{\lambda}
$$

Inequality above indicates that $\left[\begin{array}{l}x_{\lambda} \\ \mu_{\lambda}\end{array}\right] \in$ epi f. Thus, the epigraph of f is a convex set.
2. Sufficiency: Assume the epigraph of f, epi f, is a convex set. Then, from the membership of the points $\left[x_{1}, \mu_{1}\right]$ and $\left[x_{2}, \mu_{2}\right]$ in the epigraph of f, it follows that

$$
\left[\begin{array}{l}
x_{\lambda} \\
\mu_{\lambda}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
\mu_{1}
\end{array}\right]+(1-\lambda)\left[\begin{array}{l}
x_{2} \\
\mu_{2}
\end{array}\right] \in \mathrm{epi} f
$$

for any $0 \leq \lambda \leq 1$, i.e., $f\left(x_{\lambda}\right) \leq \mu_{\lambda}=\lambda \mu_{1}+(1-\lambda) \mu_{2}$. But this is true for all $\mu_{1} \geq f\left(x_{1}\right)$ and $\mu_{2} \geq f\left(x_{2}\right)$, $\underset{f \rightarrow \min }{x, y z z}$ articularly when $\mu_{1}=f\left(x_{1}\right)$ and $\mu_{2}=f\left(x_{2}\right)$. Hence we arrive at the inequality

Sublevel set

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\mathcal{L}_{\beta}=\{x \in S: f(x) \leq \beta\}
$$

Figure 11: Sublevel set of a function with respect to level β

Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

Example

Let a norm $\|\cdot\|$ be defined in the space U. Consider the set:

$$
K:=\left\{(x, t) \in U \times \mathbb{R}^{+}:\|x\| \leq t\right\}
$$

which represents the epigraph of the function $x \mapsto\|x\|$. This set is called the cone norm. According to the statement above, the set K is convex.
In the case where $U=\mathbb{R}^{n}$ and $\|x\|=\|x\|_{2}$ (Euclidean norm), the abstract set K transitions into the set:

$$
\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}^{+}:\|x\|_{2} \leq t\right\}
$$

Connection with sublevel set

If $f(x)$ - is a convex function defined on the convex set $S \subseteq \mathbb{R}^{n}$, then for any β sublevel set \mathcal{L}_{β} is convex.
The function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

Reduction to a line

$f: S \rightarrow \mathbb{R}$ is convex if and only if S is a convex set and the function $g(t)=f(x+t v)$ defined on $\{t \mid x+t v \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^{n}$, which allows checking convexity of the scalar function to establish convexity of the vector function.

