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First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set
S ⊆ Rn is convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x)

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x

Figure 1: Convex function is greater or equal than Taylor
linear approximation at any point
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Second-order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set S ⊆ Rn is convex if and only if ∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ 0

In other words, ∀y ∈ Rn:

⟨y, ∇2f(x)y⟩ ≥ 0
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Tools for discovering convexity

• Definition (Jensen’s inequality)

• Differential criteria of convexity
• Operations, that preserve convexity
• Connection with epigraph

The function is convex if and only if its epigraph is a convex set.
• Connection with sublevel set

If f(x) - is a convex function defined on the convex set S ⊆ Rn, then for any β sublevel set Lβ is convex.

The function f(x) defined on the convex set S ⊆ Rn is closed if and only if for any β sublevel set Lβ is closed.
• Reduction to a line

f : S → R is convex if and only if S is a convex set and the function g(t) = f(x + tv) defined on
{t | x + tv ∈ S} is convex for any x ∈ S, v ∈ Rn, which allows checking convexity of the scalar function to
establish convexity of the vector function.
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Example: norm cone
Let a norm ∥ · ∥ be defined in the space U . Consider the set:

K := {(x, t) ∈ U × R+ : ∥x∥ ≤ t}

which represents the epigraph of the function x 7→ ∥x∥. This set is called the cone norm. According to the
statement above, the set K is convex. 3Code for the figures
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Figure 2: Norm cones for different p - norms
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Strong convexity
f(x), defined on the convex set S ⊆ Rn, is called µ-strongly
convex (strongly convex) on S, if:

f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2)−µ

2 λ(1−λ)∥x1−x2∥2

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1 for some µ > 0.

Figure 3: Strongly convex function is greater or equal
than Taylor quadratic approximation at any point

Strong convexity criteria v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


First-order differential criterion of strong convexity
Differentiable f(x) defined on the convex set S ⊆ Rn is µ-strongly convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x) + µ

2 ∥y − x∥2

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x + µ

2 ∥∆x∥2

ñ Theorem

Let f(x) be a differentiable function on a convex set X ⊆ Rn. Then f(x) is strongly convex on X with a
constant µ > 0 if and only if

f(x) − f(x0) ≥ ⟨∇f(x0), x − x0⟩ + µ

2 ∥x − x0∥2

for all x, x0 ∈ X.
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < λ ≤ 1. According to the definition of a strongly convex function,

f(λx + (1 − λ)x0) ≤ λf(x) + (1 − λ)f(x0) − µ

2 λ(1 − λ)∥x − x0∥2

or equivalently,

f(x) − f(x0) − µ

2 (1 − λ)∥x − x0∥2 ≥ 1
λ

[f(λx + (1 − λ)x0) − f(x0)] =

= 1
λ

[f(x0 + λ(x − x0)) − f(x0)] = 1
λ

[λ⟨∇f(x0), x − x0⟩ + o(λ)] =

= ⟨∇f(x0), x − x0⟩ + o(λ)
λ

.

Thus, taking the limit as λ ↓ 0, we arrive at the initial statement.
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Proof of first-order differential criterion of strong convexity
Sufficiency: Assume the inequality in the theorem is satisfied for all x, x0 ∈ X. Take x0 = λx1 + (1 − λ)x2, where
x1, x2 ∈ X, 0 ≤ λ ≤ 1. According to the inequality, the following inequalities hold:

f(x1) − f(x0) ≥ ⟨∇f(x0), x1 − x0⟩ + µ

2 ∥x1 − x0∥2,

f(x2) − f(x0) ≥ ⟨∇f(x0), x2 − x0⟩ + µ

2 ∥x2 − x0∥2.

Multiplying the first inequality by λ and the second by 1 − λ and adding them, considering that

x1 − x0 = (1 − λ)(x1 − x2), x2 − x0 = λ(x2 − x1),

and λ(1 − λ)2 + λ2(1 − λ) = λ(1 − λ), we get

λf(x1) + (1 − λ)f(x2) − f(x0) − µ

2 λ(1 − λ)∥x1 − x2∥2 ≥

⟨∇f(x0), λx1 + (1 − λ)x2 − x0⟩ = 0.

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that µ = 0
stands for the convex case and corresponding differential criterion.
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Second-order differential criterion of strong convexity
Twice differentiable function f(x) defined on the convex set S ⊆ Rn is called µ-strongly convex if and only if
∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ µI

In other words:

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

ñ Theorem

Let X ⊆ Rn be a convex set, with intX ̸= ∅. Furthermore, let f(x) be a twice continuously differentiable
function on X. Then f(x) is strongly convex on X with a constant µ > 0 if and only if

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

for all x ∈ X and y ∈ Rn.
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0n, hence we assume y ̸= 0n.

Necessity: Assume initially that x is an interior point of X. Then x + αy ∈ X for all y ∈ Rn and sufficiently small
α. Since f(x) is twice differentiable,

f(x + αy) = f(x) + α⟨∇f(x), y⟩ + α2

2 ⟨y, ∇2f(x)y⟩ + o(α2).

Based on the first order criterion of strong convexity, we have

α2

2 ⟨y, ∇2f(x)y⟩ + o(α2) = f(x + αy) − f(x) − α⟨∇f(x), y⟩ ≥ µ

2 α2∥y∥2.

This inequality reduces to the target inequality after dividing both sides by α2 and taking the limit as α ↓ 0.

If x ∈ X but x /∈ intX, consider a sequence {xk} such that xk ∈ intX and xk → x as k → ∞. Then, we arrive at
the target inequality after taking the limit.
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor’s formula with the Lagrange remainder and the target inequality, we obtain for x + y ∈ X:

f(x + y) − f(x) − ⟨∇f(x), y⟩ = 1
2 ⟨y, ∇2f(x + αy)y⟩ ≥ µ

2 ∥y∥2,

where 0 ≤ α ≤ 1. Therefore,

f(x + y) − f(x) ≥ ⟨∇f(x), y⟩ + µ

2 ∥y∥2.

Consequently, by the first order criterion of strong convexity, the function f(x) is strongly convex with a constant µ.
It is important to mention, that µ = 0 stands for the convex case and corresponding differential criterion.
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Convex and concave function

ñ Example

Show, that f(x) = c⊤x + b is convex and concave.
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Simplest strongly convex function

ñ Example

Show, that f(x) = x⊤Ax, where A ⪰ 0 - is convex on Rn. Is it strongly convex?
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Convexity and continuity
Let f(x) - be a convex function on a convex set S ⊆ Rn.
Then f(x) is continuous ∀x ∈ ri(S). a

ñ Proper convex function

Function f : Rn → R is said to be proper convex
function if it never takes on the value −∞ and not
identically equal to ∞.

ñ Indicator function

δS(x) =
{

∞, x ∈ S,

0, x /∈ S,

is a proper convex function.

aPlease, read here about difference between interior and relative
interior.

ñ Closed function

Function f : Rn → R is said to be closed if for each
α ∈ R, the sublevel set is a closed set.
Equivalently, if the epigraph is closed, then the func-
tion f is closed.

Figure 4: The concept of a closed function is introduced to
avoid such breaches at the border.
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Facts about convexity
• f(x) is called (strictly, strongly) concave, if the function −f(x) - is (strictly, strongly) convex.

• Jensen’s inequality for the convex functions:

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αif(xi)

for αi ≥ 0;
n∑

i=1
αi = 1 (probability simplex)

For the infinite dimension case:

f

∫
S

xp(x)dx

 ≤
∫
S

f(x)p(x)dx

If the integrals exist and p(x) ≥ 0,
∫
S

p(x)dx = 1.

• If the function f(x) and the set S are convex, then any local minimum x∗ = arg min
x∈S

f(x) will be the global
one. Strong convexity guarantees the uniqueness of the solution.
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Operations that preserve convexity
• Non-negative sum of the convex functions:

αf(x) + βg(x), (α ≥ 0, β ≥ 0).

• Composition with affine function f(Ax + b) is
convex, if f(x) is convex.

• Pointwise maximum (supremum) of any number of
functions: If f1(x), . . . , fm(x) are convex, then
f(x) = max{f1(x), . . . , fm(x)} is convex.

• If f(x, y) is convex on x for any y ∈ Y :
g(x) = sup

y∈Y

f(x, y) is convex.

• If f(x) is convex on S, then g(x, t) = tf(x/t) - is
convex with x/t ∈ S, t > 0.

• Let f1 : S1 → R and f2 : S2 → R, where
range(f1) ⊆ S2. If f1 and f2 are convex, and f2 is
increasing, then f2 ◦ f1 is convex on S1.

Figure 5: Pointwise maximum (supremum) of convex functions
is convex
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αf(x) + βg(x), (α ≥ 0, β ≥ 0).
• Composition with affine function f(Ax + b) is

convex, if f(x) is convex.
• Pointwise maximum (supremum) of any number of

functions: If f1(x), . . . , fm(x) are convex, then
f(x) = max{f1(x), . . . , fm(x)} is convex.

• If f(x, y) is convex on x for any y ∈ Y :
g(x) = sup

y∈Y

f(x, y) is convex.

• If f(x) is convex on S, then g(x, t) = tf(x/t) - is
convex with x/t ∈ S, t > 0.
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Maximum eigenvalue of a matrix is a convex function

ñ Example

Show, that f(A) = λmax(A) - is convex, if A ∈ Sn.
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Other forms of convexity

• Log-convexity: log f is convex; Log convexity implies convexity.

• Log-concavity: log f concave; not closed under addition!
• Exponential convexity: [f(xi + xj)] ⪰ 0, for x1, . . . , xn

• Operator convexity: f(λX + (1 − λ)Y )
• Quasiconvexity: f(λx + (1 − λ)y) ≤ max{f(x), f(y)}
• Pseudoconvexity: ⟨∇f(y), x − y⟩ ≥ 0 −→ f(x) ≥ f(y)
• Discrete convexity: f : Zn → Z; “convexity + matroid theory.”
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ µ(f(x) − f∗)∀x

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)
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Figure 7: PL function
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Convex optimization problem

Figure 8: The idea behind the definition of a convex
optimization problem

Note, that there is an agreement in notation of
mathematical programming. The problems of the
following type are called Convex optimization problem:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

Ax = b,

(COP)

where all the functions f0(x), f1(x), . . . , fm(x) are convex
and all the equality constraints are affine. It sounds a bit
strange, but not all convex problems are convex
optimization problems.

f0(x) → min
x∈S

, (CP)

where f0(x) is a convex function, defined on the convex
set S. The necessity of affine equality constraint is
essential.
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Linear Least Squares aka Linear Regression

Figure 9: Illustration

In a least-squares, or linear regression, problem, we have measurements X ∈ Rm×n and y ∈ Rm and seek a vector
θ ∈ Rn such that Xθ is close to y. Closeness is defined as the sum of the squared differences:

m∑
i=1

(x⊤
i θ − yi)2 = ∥Xθ − y∥2

2 → min
θ∈Rn

For example, we might have a dataset of m users, each represented by n features. Each row x⊤
i of X is the features

for user i, while the corresponding entry yi of y is the measurement we want to predict from x⊤
i , such as ad

spending. The prediction is given by x⊤
i θ.
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?

2. What do you think about convergence of Gradient Descent for this problem?

1Take a look at the 3example of real-world data linear least squares problem
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l2-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an
l2-penality, also known as Tikhonov regularization, l2-regularization, or weight decay.

∥Xθ − y∥2
2 + µ

2 ∥θ∥2
2 → min

θ∈Rn

Note: With this modification the objective is µ-strongly convex again.

Take a look at the 3code
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Neural networks?
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