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First-order differential criterion of convexity
The differentiable function f(z) defined on the convex set

S C R" is convex if and only if Va,y € S:

, f(z)
fy) = f@) + VI (2)(y — )
Let y = = 4+ Az, then the criterion will become more tractable: .
Function
flz+Az) > f(z) + VT (z)Ax
0 x

Global linear lower bounds

Figure 1: Convex function is greater or equal than Taylor
linear approximation at any point
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Second-order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set S C R" is convex if and only if Vz € int(S) # 0:

In other words, Vy € R":
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Tools for discovering convexity

® Definition (Jensen’s inequality)
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Tools for discovering convexity

® Definition (Jensen’s inequality)

® Differential criteria of convexity

— mi " I
‘f §ny1r; Strong convexity criteria


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Tools for discovering convexity

® Definition (Jensen’s inequality)
® Differential criteria of convexity

® QOperations, that preserve convexity
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Tools for discovering convexity

® Definition (Jensen’s inequality)

® Differential criteria of convexity

® QOperations, that preserve convexity
® Connection with epigraph

The function is convex if and only if its epigraph is a convex set.
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Tools for discovering convexity

® Definition (Jensen’s inequality)
® Differential criteria of convexity
® QOperations, that preserve convexity
® Connection with epigraph
The function is convex if and only if its epigraph is a convex set.
® Connection with sublevel set
If f(z) - is a convex function defined on the convex set S C R™, then for any 3 sublevel set Lg is convex.

The function f(x) defined on the convex set S C R™ is closed if and only if for any 3 sublevel set L3 is closed.
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Tools for discovering convexity

® Definition (Jensen’s inequality)
® Differential criteria of convexity
® QOperations, that preserve convexity
® Connection with epigraph
The function is convex if and only if its epigraph is a convex set.
® Connection with sublevel set
If f(z) - is a convex function defined on the convex set S C R™, then for any 3 sublevel set Lg is convex.
The function f(x) defined on the convex set S C R™ is closed if and only if for any 3 sublevel set L3 is closed.
¢ Reduction to a line

f S — Ris convex if and only if S is a convex set and the function ¢(t) = f(x + tv) defined on
{t | z+tv € S} is convex for any z € S,v € R", which allows checking convexity of the scalar function to
establish convexity of the vector function.

‘f - 5“;‘; Strong convexity criteria 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Example: norm cone
Let a norm || - || be defined in the space U. Consider the set:

K :={(z,t) e U xR" : ||z|| < t}

which represents the epigraph of the function x +— ||z||. This set is called the cone norm. According to the
statement above, the set K is convex. ®Code for the figures

p =1 Norm Cone p =2 Norm Cone p =~ Norm Cone

-1.0
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0.0
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Strong convexity
f(x), defined on the convex set S C R", is called u-strongly

convex (strongly convex) on S, if:
f(z)
fAz14+(1-A)z2) < Af($1)+(1*>\)f(fv2)*gA(lfA)||$1*x2|\2

for any z1,z2 € S and 0 < A < 1 for some p > 0. Function

0 T

Global quadratic lower bounds

Figure 3: Strongly convex function is greater or equal
than Taylor quadratic approximation at any point
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First-order differential criterion of strong convexity

Differentiable f(x) defined on the convex set S C R" is u-strongly convex if and only if Vx,y € S:

F) 2 f(@) + VT @)y —2) + Sy -«
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First-order differential criterion of strong convexity

Differentiable f(x) defined on the convex set S C R" is u-strongly convex if and only if Vx,y € S:

F) 2 f(@) + VT @)y —2) + Sy -«

Let y = x 4+ Az, then the criterion will become more tractable:

fa+A2) 2 f(@) + VI (@) A + £ Acl?
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First-order differential criterion of strong convexity
Differentiable f(x) defined on the convex set S C R" is u-strongly convex if and only if Vx,y € S:
F) 2 f(@) + VT @)y —2) + Sy -«

Let y = x 4+ Az, then the criterion will become more tractable:
fa+Ax) > f(@) + VT (@) Ae + Gl|Ax|?

i Theorem

Let f(z) be a differentiable function on a convex set X C R™. Then f(z) is strongly convex on X with a
constant p > 0 if and only if

f(@) = f(z0) = (V (o), — zo) + gnx — x|

for all z,z0 € X.
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

JO + (1= Nzo) < AF(@) + (1= N (o) = EX1 = )| — 2o

or equivalently,

£(@) = flwo) = (1= Nlle =zl > $[FO@ + (1 = Naw) = f(zo)] =
= 1o + A — 20)) — f(wo)] = 3 MV f(z0), % — 20) +o(N)] =

= (Vf(@), o~ w0) + L.

Thus, taking the limit as A | 0, we arrive at the initial statement.
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Proof of first-order differential criterion of strong convexity
Sufficiency: Assume the inequality in the theorem is satisfied for all z,xo € X. Take o = Az1 + (1 — A)x2, where
z1,22 € X, 0 <A < 1. According to the inequality, the following inequalities hold:

F(@) = f(wo) = (Vi (wo), w1 — wo) + Gller — o,

J(w2) = f(w0) = (V (w0, w2 = wo) + Gllrz — o]

Multiplying the first inequality by A and the second by 1 — X\ and adding them, considering that

$1—$0:(1—A)($1—$2), l‘g—l‘oZA(mQ—ml),

and A(1=XA)2 + 221 = X) = A(1 =), we get

Af(@n) + (L= N f(2) = f(20) = GAQ = NJar = a]* >
(Vf(zo), Ax1 + (1 — N)x2 — z0) = 0.

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that =0
stands for the convex case and corresponding differential criterion.
‘fﬁ}fﬂ.}‘; Strong convexity criteria 0 O 9
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R" is called u-strongly convex if and only if
Vz € int(S) # 0:

V2 f(z) = pl

In other words:

(y, V2 f(@)y) > pllyl®
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R" is called u-strongly convex if and only if
Vz € int(S) # 0:

V2 f(z) = pl

In other words:

(y, V2 f(@)y) = plyl?
i Theorem

Let X C R™ be a convex set, with intX # (. Furthermore, let f(x) be a twice continuously differentiable
function on X. Then f(z) is strongly convex on X with a constant x> 0 if and only if

(y, V2 f(@)y) > plyll®
for all z € X and y € R™.
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0,,, hence we assume y # 0,,.
Necessity: Assume initially that x is an interior point of X. Then z 4+ ay € X for all y € R™ and sufficiently small
a. Since f(x) is twice differentiable,

Ja+ay) = f(2) + a(Vf(@),y) + Ty, V2 (@)y) + o(a®).

Based on the first order criterion of strong convexity, we have

a2

5 W V2 f(@)y) +o(a®) = f(z + ay) — f(2) — a{VF(2),y) 2 ga2\|y|\2-

This inequality reduces to the target inequality after dividing both sides by o and taking the limit as o | 0.

If z € X but z ¢ intX, consider a sequence {zx} such that x; € intX and zx — x as k — co. Then, we arrive at
the target inequality after taking the limit.
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for x +y € X:

1

fla+y) = flz) = (VFi(@),y) = 5

0, V21 (@ + ay)y) = Gllul®,

where 0 < a < 1. Therefore,

Fa+y) = f@) 2 (Vi@).y) + Sl

Consequently, by the first order criterion of strong convexity, the function f(z) is strongly convex with a constant u.
It is important to mention, that u = 0 stands for the convex case and corresponding differential criterion.
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Convex and concave function

i Example

Show, that f(x) = c'z + b is convex and concave.
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Simplest strongly convex function

i Example

Show, that f(z) = =" Az, where A = 0 - is convex on R™. Is it strongly convex?
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Convexity and continuity
Let f(x) - be a convex function on a convex set S C R".
Then f(z) is continuous Vz € ri(S). ?

i Proper convex function
Function f : R™ — R is said to be proper convex

function if it never takes on the value —oo and not
identically equal to oco.

i Indicator function

o, xT €S,
65(1:)_{0 ¢S

is a proper convex function.

?Please, read here about difference between interior and relative
interior.
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Convexity and continuity
Let f(x) - be a convex function on a convex set S C R".
Then f(z) is continuous Vz € ri(S). ?

o .
1 Proper convex function

Function f : R™ — R is said to be proper convex
function if it never takes on the value —oo and not
identically equal to oco.

i Indicator function

o, xT €S,
65(1:)_{0 ¢S

is a proper convex function.

?Please, read here about difference between interior and relative
interior.
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i Closed function

Function f : R™ — R is said to be closed if for each
a € R, the sublevel set is a closed set.
Equivalently, if the epigraph is closed, then the func-
tion f is closed.

f(z) f(@)
) i ) Closed
Convex function convex function
. L]
0 T 0

Figure 4: The concept of a closed function is introduced to
avoid such breaches at the border.

0 O
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Facts about convexity
o f(x) is called (strictly, strongly) concave, if the function —f(z) - is (strictly, strongly) convex.
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Facts about convexity
o f(x) is called (strictly, strongly) concave, if the function —f(z) - is (strictly, strongly) convex.

® Jensen's inequality for the convex functions:

f <Z ail'i) < Zaif(ﬂvi)

for a; > 0; > a; =1 (probability simplex)
=1
For the infinite dimension case:

i / wp(a)ds | < / f(@)p(a)da

S S

If the integrals exist and p(z) >0, [ p(z)dz = 1.
5
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Facts about convexity
o f(x) is called (strictly, strongly) concave, if the function —f(z) - is (strictly, strongly) convex.

® Jensen's inequality for the convex functions:

f Zaia?z‘ Szaif(ﬂvi)

for a; > 0; > a; =1 (probability simplex)
=1
For the infinite dimension case:

i / wp(a)ds | < / f(@)p(a)da

S S

If the integrals exist and p(z) >0, [ p(z)dz = 1.
5

® |f the function f(z) and the set S are convex, then any local minimum z* = arg miglf(:r) will be the global
TE

one. Strong convexity guarantees the uniqueness of the solution.
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Operations that preserve convexity
® Non-negative sum of the convex functions:

af(z) + By(z), (@ 2 0,5 > 0).

f(z) = max{fi(z), f2(2), f3(z)}

fi(z)
fa(z)

f3(z)

Figure 5: Pointwise maximum (supremum) of convex functions

: is convex
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Operations that preserve convexity
® Non-negative sum of the convex functions:

Compsiton wih afine funct (@) = max{fi(@), fa(a), fo(@)}

® Composition with affine function f(Az + b) is
convex, if f(x) is convex.

fi(z)
f2(z)

fs(z)

Figure 5: Pointwise maximum (supremum) of convex functions

) is convex
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Operations that preserve convexity
® Non-negative sum of the convex functions:

af(z) + Bg(z), (e > 0,5 > 0).
® Composition with affine function f(Az +b) is f(x) - maX{fl(x>7 f2($), f3<x)}
convex, if f(z) is convex.
® Pointwise maximum (supremum) of any number of
functions: If fi(z),..., fm(x) are convex, then fl (x)
f(z) = max{fi(x),..., fm(z)} is convex.
fa(z)

fs(z)

Figure 5: Pointwise maximum (supremum) of convex functions

) is convex
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Operatlons that preserve convexity
® Non-negative sum of the convex functions:

af(x)+ Bg(x), (@ > 0,8 > 0).

® Composition with affine function f(Az +b) is f(x) - maX{fl(x>7 f2($), f3<x)}
convex, if f(z) is convex.

® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., fm(x) are convex, then fl (x)
f(z) = max{fi(x),..., fm(z)} is convex.
® If f(z,y) is convex on x for any y € YV f2(a;)
g(z) = sup f(z,y) is convex.
yeY

fs(z)

Figure 5: Pointwise maximum (supremum) of convex functions

) is convex
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Operatlons that preserve convexity
® Non-negative sum of the convex functions:

af(z) + Bg(z), (> 0,8 > 0).
. Compositiogn with affine function f(Az + b) is f(z) = max{fi(z), fa(z), f3(z)}

convex, if f(z) is convex.
® Pointwise maximum (supremum) of any number of

functions: If fi(x),..., fm(z) are convex, then fl (x)
f(z) = max{fi(x),..., fm(z)} is convex.

® If f(z,y) is convex on x for any y € YV f2(a;)
g(z) = sup f(z,y) is convex.

yey
® If f(x) is convex on S, then g(z,t) = tf(z/t) -
convex with z/t € S,t > 0.

fs(z)

Figure 5: Pointwise maximum (supremum) of convex functions

) is convex
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Operatlons that preserve convexity
® Non-negative sum of the convex functions:
af(x) + Bg(z), (a2 0,5 > 0).

® Composition with affine function f(Az +b) is f(x) - max{fl(x)a f2($)7 f3(x)}
convex, if f(z) is convex.
® Pointwise maximum (supremum) of any number of

functions: If fi(x),..., fm(z) are convex, then .fl (x)
f(z) = max{fi(x),..., fm(z)} is convex.

® If f(z,y) is convex on x for any y € YV f2($)
g(z) = sup f(z,y) is convex.

yey
® If f(x) is convex on S, then g(z,t) = tf(z/t) -
convex with z/t € S,t > 0.
® |let f1: 51 = Rand fo: 52 — R, where
range(f1) C Sa. If f1 and fo are convex, and f2 is
increasing, then f> o f1 is convex on S;. fg(il,')

Figure 5: Pointwise maximum (supremum) of convex functions

) is convex
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Maximum eigenvalue of a matrix is a convex function

H Example

Show, that f(A) = Amaz(A) - is convex, if A € S™.
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Other forms of convexity

® | og-convexity: log f is convex; Log convexity implies convexity.
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Other forms of convexity

® | og-convexity: log f is convex; Log convexity implies convexity.

® | og-concavity: log f concave; not closed under addition!
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Other forms of convexity

® | og-convexity: log f is convex; Log convexity implies convexity.

® | og-concavity: log f concave; not closed under addition!
® Exponential convexity: [f(z; + z;)] = 0, for z1,...,2x,
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(z: + z;)] = 0, for z1,..., 2z,
Operator convexity: f(AX + (1 —A)Y)
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Log-convexity: log f is convex; Log convexity implies convexity.
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(z: + z;)] = 0, for z1,..., 2z,
Operator convexity: f(AX + (1 —A)Y)

Quasiconvexity: f(Az + (1 — A)y) < max{f(z), f(y)}
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(z: + z;)] = 0, for z1,..., 2z,
Operator convexity: f(AX + (1 —A)Y)
Quasiconvexity: f(Az + (1 — A)y) < max{f(z), f(y)}
Pseudoconvexity: (Vf(y),z —y) >0 — f(z) > f(y)
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(z: + z;)] = 0, for z1,..., 2z,
Operator convexity: f(AX + (1 —A)Y)

Quasiconvexity: f(Az + (1 — A)y) < max{f(z), f(y)}
Pseudoconvexity: (Vf(y),z —y) >0 — f(z) > f(y)
Discrete convexity: f :Z™ — 7Z; “convexity + matroid theory.”
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some p > 0,

IV f@)I* > p(f(x) = f)Ve
It is interesting, that Gradient Descent algorithm has
The following functions satisfy the PL-condition, but are not convex. ®Link to the code

f(z) = 2 4 3sin’(z)

Function, that satisfies
Polyak- Lojasiewicz condition

— f(x) = x2 + 3sin?(x)

-3 -2 -1 0 1 2 3
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some p > 0,
IV f@)I* > p(f(x) = f)Ve
It is interesting, that Gradient Descent algorithm has
The following functions satisfy the PL-condition, but are not convex. ®Link to the code
(y —sinx)?

f(x) = 2* + 3sin®(z) fz,y) = .

Non-convex PL function

Function, that satisfies
Polyak- Lojasiewicz condition

—— fix) =x?%+ 3sin?(x)

-3 -2 -1 0 1 2 3

— mi " I
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Convex optimization problem

Non-convex s;w‘:\

flz) =0

Convex function

flz)=2>—-1

/

Figure 8: The idea behind the definition of a convex

optimization problem

‘f — min
Tz

Convexity in ML

Note, that there is an agreement in notation of
mathematical programming. The problems of the
following type are called Convex optimization problem:

fo(z) = min

IGR”
st. fi(z) <0,i=1,...,m (COP)
Az = b,
where all the functions fo(x), fi(z),..., fm(x) are convex

and all the equality constraints are affine. It sounds a bit
strange, but not all convex problems are convex
optimization problems.

fo(z) — min, (CP)
z€eS

where fo(x) is a convex function, defined on the convex
set S. The necessity of affine equality constraint is
essential.
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Linear Least Squares aka Linear Regression

Linear least squares.
.o
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Figure 9: lllustration

Function value

Linear least squares.

-100 =75 =50 -25 00 25 50 75 100
x

In a least-squares, or linear regression, problem, we have measurements X € R™*"™ and y € R™ and seek a vector
0 € R™ such that X6 is close to y. Closeness is defined as the sum of the squared differences:

m

> (@0 —y:)* =X0 -yl — min
OcR™

i=1

For example, we might have a dataset of m users, each represented by n features. Each row z; of X is the features
for user 4, while the corresponding entry y; of ¥ is the measurement we want to predict from 2, such as ad

spending. The prediction is given by x; 6.
R /- min

Convexity in ML
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Linear Least Squares aka Linear Regression !

1. Is this problem convex? Strongly convex?

‘f - wl} Convexity in ML
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Linear Least Squares aka Linear Regression !

1. Is this problem convex? Strongly convex?
2. What do you think about convergence of Gradient Descent for this problem?

1Take a look at the ®example of real-world data linear least squares problem
‘f - §ny1r; Convexity in ML
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lo-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an
l2-penality, also known as Tikhonov regularization, l>-regularization, or weight decay.

X0 — |2+ £)60)2 - mi
[ yllz + 5116l — min

Note: With this modification the objective is u-strongly convex again.

Take a look at the ®code

‘f - fnﬂ Convexity in ML
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Neural networks?
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