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The reader will find no figures in this work. The methods which
I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject to a
regular and uniform rule of procedure.

Preface to Mécanique analytique

Figure 1: Joseph-Louis Lagrange
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Motivation

Duality lets us associate to any constrained optimization problem a concave maximization problem, whose solutions
lower bound the optimal value of the original problem. What is interesting is that there are cases, when one can
solve the primal problem by first solving the dual one. Now, consider a general constrained optimization problem:

Primal: f(x) → min
x∈S

Dual: g(y) → max
y∈Ω

We’ll build g(y), that preserves the uniform bound:

g(y) ≤ f(x) ∀x ∈ S, ∀y ∈ Ω

As a consequence:

max
y∈Ω

g(y) ≤ min
x∈S

f(x)
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Lagrange duality

We’ll consider one of many possible ways to construct g(y) in case, when we have a general mathematical
programming problem with functional constraints:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

And the Lagrangian, associated with this problem:

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x) = f0(x) + λ⊤f(x) + ν⊤h(x)
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Dual function

We assume D =
m⋂

i=0
dom fi ∩

p⋂
i=1

dom hi is nonempty. We define the Lagrange dual function (or just dual function)

g : Rm × Rp → R as the minimum value of the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)

When the Lagrangian is unbounded below in x, the dual function takes on the value −∞. Since the dual function is
the pointwise infimum of a family of affine functions of (λ, ν), it is concave, even when the original problem is not
convex.
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Dual function as a lower bound

Let us show, that the dual function yields lower bounds on
the optimal value p∗ of the original problem for any
λ ⪰ 0, ν. Suppose some x̂ is a feasible point for the
original problem, i.e., fi(x̂) ≤ 0 and hi(x̂) = 0, λ ⪰ 0.
Then we have:

L(x̂, λ, ν) = f0(x̂) + λ⊤f(x̂)︸ ︷︷ ︸
≤0

+ ν⊤h(x̂)︸ ︷︷ ︸
=0

≤ f0(x̂)

Hence

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̂, λ, ν) ≤ f0(x̂)

g(λ, ν) ≤ p∗

A natural question is: what is the best lower bound that
can be obtained from the Lagrange dual function? This
leads to the following optimization problem:

g(λ, ν) → max
λ∈Rm, ν∈Rp

s.t. λ ⪰ 0

The term “dual feasible”, to describe a pair (λ, ν) with
λ ⪰ 0 and g(λ, ν) > −∞, now makes sense. It means, as
the name implies, that (λ, ν) is feasible for the dual
problem. We refer to (λ∗, ν∗) as dual optimal or optimal
Lagrange multipliers if they are optimal for the above
problem.
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Summary

Primal Dual
Function f0(x) g(λ, ν) = min

x∈D
L(x, λ, ν)

Variables x ∈ S ⊆ R⋉ λ ∈ Rm
+ , ν ∈ Rp

Constraints fi(x) ≤ 0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p

λi ≥ 0, ∀i ∈ 1, m

Problem
f0(x) → min

x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p

g(λ, ν) → max
λ∈Rm,ν∈Rp

s.t. λ ⪰ 0

Optimal x∗ if feasible,
p∗ = f0(x∗)

λ∗, ν∗ if max is achieved,
d∗ = g(λ∗, ν∗)
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Example. Linear Least Squares
We are addressing a problem within a non-empty budget set, defined as follows:

min xT x

s.t. Ax = b,

with the matrix A ∈ Rm×n.

This problem is devoid of inequality constraints, presenting m linear equality constraints instead. The Lagrangian is
expressed as L(x, ν) = xT x + νT (Ax − b), spanning the domain Rn × Rm. The dual function is denoted by
g(ν) = infx L(x, ν). Given that L(x, ν) manifests as a convex quadratic function in terms of x, the minimizing x
can be derived from the optimality condition

∇xL(x, ν) = 2x + AT ν = 0,

leading to x = −(1/2)AT ν. As a result, the dual function
is articulated as

g(ν) = L(−(1/2)AT ν, ν) = −(1/4)νT AAT ν − bT ν,

emerging as a concave quadratic function within the
domain Rp. According to the lower bound property, for
any ν ∈ Rp, the following holds true:

−(1/4)νT AAT ν − bT ν ≤ inf{xT x | Ax = b}.

Which is a simple non-trivial lower bound without any
problem solving.
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expressed as L(x, ν) = xT x + νT (Ax − b), spanning the domain Rn × Rm. The dual function is denoted by
g(ν) = infx L(x, ν). Given that L(x, ν) manifests as a convex quadratic function in terms of x, the minimizing x
can be derived from the optimality condition

∇xL(x, ν) = 2x + AT ν = 0,

leading to x = −(1/2)AT ν. As a result, the dual function
is articulated as

g(ν) = L(−(1/2)AT ν, ν) = −(1/4)νT AAT ν − bT ν,

emerging as a concave quadratic function within the
domain Rp. According to the lower bound property, for
any ν ∈ Rp, the following holds true:
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Example. Two-way partitioning problem
We are examining a (nonconvex) problem:

minimize xT W x

subject to x2
i = 1, i = 1, . . . , n,

Figure 2: Illustration of two-way partitioning problem

This problem can be construed as a two-way
partitioning problem over a set of n elements,
denoted as {1, . . . , n}: A viable x corresponds
to the partition

{1, . . . , n} = {i|xi = −1} ∪ {i|xi = 1}.

The coefficient Wij in the matrix represents
the expense associated with placing elements i
and j in the same partition, while −Wij

signifies the cost of segregating them. The
objective encapsulates the aggregate cost
across all pairs of elements, and the challenge
posed by problem is to find the partition that
minimizes the total cost.
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Example. Two-way partitioning problem
We now derive the dual function for this problem. The Lagrangian is expressed as

L(x, ν) = xT W x +
n∑

i=1

νi(x2
i − 1) = xT (W + diag(ν))x − 1T ν.

. . .

By minimizing over x, we procure the Lagrange dual function:

g(ν) = inf
x

xT (W + diag(ν))x − 1T ν =
{

−1T ν if W + diag(ν) ⪰ 0
−∞ otherwise,

exploiting the realization that the infimum of a quadratic form is either zero (when the form is positive semidefinite)
or −∞ (when it’s not).

This dual function furnishes lower bounds on the optimal value of the problem. For instance, we can adopt the
particular value of the dual variable

ν = −λmin(W )1

which is dual feasible, since W + diag(ν) = W − λmin(W )I ⪰ 0.

This renders a simple bound on the optimal value p∗: p∗ ≥ −1T ν = nλmin(W ).

The code for the problem is available here 3Open in Colab
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Strong duality
It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we
have:

p∗ ≥ d∗

While the difference between them is often called duality gap:

p∗ − d∗ ≥ 0

Note, that we always have weak duality, if we’ve formulated primal and dual problem. It means, that if we have
managed to solve the dual problem (which is always concave, no matter whether the initial problem was or not),
then we have some lower bound. Surprisingly, there are some notable cases, when these solutions are equal.

Strong duality happens if duality gap is zero:

p∗ = d∗

Notice: both p∗ and d∗ may be ∞.

• Several sufficient conditions known!
• “Easy” necessary and sufficient conditions: unknown.
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Strong duality in linear least squares

Exercise

In the Least-squares solution of linear equations example above calculate the primal optimum p∗ and the dual
optimum d∗ and check whether this problem has strong duality or not.

Strong duality v § } 12
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Useful features of duality

• Construction of lower bound on solution of the primal problem.

It could be very complicated to solve the initial problem. But if we have the dual problem, we can take an
arbitrary y ∈ Ω and substitute it in g(y) - we’ll immediately obtain some lower bound.

• Checking for the problem’s solvability and attainability of the solution.

From the inequality max
y∈Ω

g(y) ≤ min
x∈S

f0(x) follows: if min
x∈S

f0(x) = −∞, then Ω = ∅ and vice versa.

• Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds: g(y∗) = f0(x∗) we lose nothing.
• Obtaining a lower bound on the function’s residual.

f0(x) − f∗
0 ≤ f0(x) − g(y) for an arbitrary y ∈ Ω (suboptimality certificate). Moreover,

p∗ ∈ [g(y), f0(x)], d∗ ∈ [g(y), f0(x)]
• Dual function is always concave

As a pointwise minimum of affine functions.

Strong duality v § } 13
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Slater’s condition

Theorem

If for a convex optimization problem (i.e., assuming minimization, f0, fi are convex and hi are affine), there
exists a point x such that h(x) = 0 and fi(x) < 0 (existance of a strictly feasible point), then we have a zero
duality gap and KKT conditions become necessary and sufficient.

Strong duality v § } 14

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


An example of convex problem, when Slater’s condition does not hold

Example

min{f0(x) = x | f1(x) = x2

2 ≤ 0},

The only point in the budget set is: x∗ = 0. However, it is impossible to find a non-negative λ∗ ≥ 0, such that

∇f0(0) + λ∗∇f1(0) = 1 + λ∗x = 0.
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A nonconvex quadratic problem with strong duality
On rare occasions strong duality obtains
for a nonconvex problem. As an
important example, we consider the
problem of minimizing a nonconvex
quadratic function over the unit ball

x⊤Ax + 2b⊤x → min
x∈Rn

s.t. x⊤x ≤ 1

where A ∈ Sn, A ⪰̸ 0 and b ∈ Rn. Since
A ⪰̸ 0, this is not a convex problem.
This problem is sometimes called the
trust region problem, and arises in
minimizing a second-order approximation
of a function over the unit ball, which is
the region in which the approximation is
assumed to be approximately valid.

Solution
Lagrangian and dual function

L(x, λ) = x⊤Ax + 2b⊤x + λ(x⊤x − 1) = x⊤(A + λI)x + 2b⊤x − λ

g(λ) =
{

−b⊤(A + λI)†b − λ if A + λI ⪰ 0
−∞, otherwise

Dual problem:

− b⊤(A + λI)†b − λ → max
λ∈R

s.t. A + λI ⪰ 0

−
n∑

i=1

(q⊤
i b)2

λi + λ
− λ → max

λ∈R

s.t. λ ≥ −λmin(A)
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Sensitivity analysis

Let us switch from the original optimization problem

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

(P)

To the perturbed version of it:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ ui, i = 1, . . . , m

hi(x) = vi, i = 1, . . . , p

(Per)

Note, that we still have the only variable x ∈ Rn, while treating u ∈ Rm, v ∈ Rp as parameters. It is obvious, that
Per(u, v) → P if u = 0, v = 0. We will denote the optimal value of Per as p∗(u, v), while the optimal value of the
original problem P is just p∗. One can immediately say, that p∗(u, v) = p∗.

Speaking of the value of some i-th constraint we can say, that

• ui = 0 leaves the original problem
• ui > 0 means that we have relaxed the inequality
• ui < 0 means that we have tightened the constraint

One can even show, that when P is convex optimization problem, p∗(u, v) is a convex function.
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Sensitivity analysis
Suppose, that strong duality holds for the orriginal problem and suppose, that x is any feasible point for the
perturbed problem:

p∗(0, 0) = p∗ = d∗ = g(λ∗, ν∗) ≤

≤ L(x, λ∗, ν∗) =

= f0(x) +
m∑

i=1

λ∗
i fi(x) +

p∑
i=1

ν∗
i hi(x) ≤

≤ f0(x) +
m∑

i=1

λ∗
i ui +

p∑
i=1

ν∗
i vi

Which means

f0(x) ≥ p∗(0, 0) − λ∗T
u − ν∗T

v

And taking the optimal x for the perturbed problem, we have:

p∗(u, v) ≥ p∗(0, 0) − λ∗T
u − ν∗T

v (1)
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Sensitivity analysis
In scenarios where strong duality holds, we can draw several insights about the sensitivity of optimal solutions in
relation to the Lagrange multipliers. These insights are derived from the inequality expressed in equation above:

• Impact of Tightening a Constraint (Large λ⋆
i ):

When the ith constraint’s Lagrange multiplier, λ⋆
i , holds a substantial value, and if this constraint is tightened

(choosing ui < 0), there is a guarantee that the optimal value, denoted by p⋆(u, v), will significantly increase.

• Effect of Adjusting Constraints with Large Positive or Negative ν⋆
i :

• If ν⋆
i is large and positive and vi < 0 is chosen, or

• If ν⋆
i is large and negative and vi > 0 is selected,

then in either scenario, the optimal value p⋆(u, v) is expected to increase greatly.

• Consequences of Loosening a Constraint (Small λ⋆
i ):

If the Lagrange multiplier λ⋆
i for the ith constraint is relatively small, and the constraint is loosened (choosing

ui > 0), it is anticipated that the optimal value p⋆(u, v) will not significantly decrease.
• Outcomes of Tiny Adjustments in Constraints with Small ν⋆

i :

• When ν⋆
i is small and positive, and vi > 0 is chosen, or

• When ν⋆
i is small and negative, and vi < 0 is opted for,

in both cases, the optimal value p⋆(u, v) will not significantly decrease.

These interpretations provide a framework for understanding how changes in constraints, reflected through their
corresponding Lagrange multipliers, impact the optimal solution in problems where strong duality holds.
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Local sensitivity
Suppose now that p∗(u, v) is differentiable at
u = 0, v = 0.

λ∗
i = −∂p∗(0, 0)

∂ui
ν∗

i = −∂p∗(0, 0)
∂vi

(2)

To show this result we consider the directional derivative
of p∗(u, v) along the direction of some i-th basis vector ei:

lim
t→0

p∗(tei, 0) − p∗(0, 0)
t

= ∂p∗(0, 0)
∂ui

From the inequality Equation 1 and taking the limit t → 0
with t > 0 we have

p∗(tei, 0) − p∗

t
≥ −λ∗

i → ∂p∗(0, 0)
∂ui

≥ −λ∗
i

For the negative t < 0 we have:

p∗(tei, 0) − p∗

t
≤ −λ∗

i → ∂p∗(0, 0)
∂ui

≤ −λ∗
i

The same idea can be used to establish the fact about vi.
The local sensitivity result Equation 2 provides a way to
understand the impact of constraints on the optimal
solution x∗ of an optimization problem. If a constraint
fi(x∗) is negative at x∗, it’s not affecting the optimal
solution, meaning small changes to this constraint won’t
alter the optimal value. In this case, the corresponding
optimal Lagrange multiplier will be zero, as per the
principle of complementary slackness.
However, if fi(x∗) = 0, meaning the constraint is
precisely met at the optimum, then the situation is
different. The value of the i-th optimal Lagrange
multiplier, λ∗

i , gives us insight into how ‘sensitive’ or
‘active’ this constraint is. A small λ∗

i indicates that slight
adjustments to the constraint won’t significantly affect
the optimal value. Conversely, a large λ∗

i implies that
even minor changes to the constraint can have a
significant impact on the optimal solution.
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Mixed strategies for matrix games

Figure 3: The scheme of a mixed strategy matrix game

In zero-sum matrix games, players 1 and
2 choose actions from sets {1, ..., n} and
{1, ..., m}, respectively. The outcome is
a payment from player 1 to player 2,
determined by a payoff matrix
P ∈ Rn×m. Each player aims to use
mixed strategies, choosing actions
according to a probability distribution:
player 1 uses probabilities uk for each
action i, and player 2 uses vl.
The expected payoff from player 1 to
player 2 is given by∑n

k=1

∑m

l=1 ukvlPkl = uT P v. Player 1
seeks to minimize this expected payoff,
while player 2 aims to maximize it.

Applications v § } 21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Mixed strategies for matrix games

Figure 3: The scheme of a mixed strategy matrix game

In zero-sum matrix games, players 1 and
2 choose actions from sets {1, ..., n} and
{1, ..., m}, respectively. The outcome is
a payment from player 1 to player 2,
determined by a payoff matrix
P ∈ Rn×m. Each player aims to use
mixed strategies, choosing actions
according to a probability distribution:
player 1 uses probabilities uk for each
action i, and player 2 uses vl.

The expected payoff from player 1 to
player 2 is given by∑n

k=1

∑m

l=1 ukvlPkl = uT P v. Player 1
seeks to minimize this expected payoff,
while player 2 aims to maximize it.

Applications v § } 21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Mixed strategies for matrix games

Figure 3: The scheme of a mixed strategy matrix game

In zero-sum matrix games, players 1 and
2 choose actions from sets {1, ..., n} and
{1, ..., m}, respectively. The outcome is
a payment from player 1 to player 2,
determined by a payoff matrix
P ∈ Rn×m. Each player aims to use
mixed strategies, choosing actions
according to a probability distribution:
player 1 uses probabilities uk for each
action i, and player 2 uses vl.
The expected payoff from player 1 to
player 2 is given by∑n

k=1

∑m

l=1 ukvlPkl = uT P v. Player 1
seeks to minimize this expected payoff,
while player 2 aims to maximize it.

Applications v § } 21

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Mixed strategies for matrix games. Player 1’s Perspective

Assuming player 2 knows player 1’s strategy u, player 2 will choose v to maximize
uT P v. The worst-case expected payoff is thus:

max
v≥0,1T v=1

uT P v = max
i=1,...,m

(P T u)i

Player 1’s optimal strategy minimizes this worst-case payoff, leading to the
optimization problem:

min max
i=1,...,m

(P T u)i

s.t. u ≥ 0

1T u = 1

(3)

This forms a convex optimization problem with the optimal value denoted as p∗
1.
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Mixed strategies for matrix games. Player 2’s Perspective
Conversely, if player 1 knows player 2’s strategy v, the goal is to minimize uT P v.
This leads to:

min
u≥0,1T u=1

uT P v = min
i=1,...,n

(P v)i

Player 2 then maximizes this to get the largest guaranteed payoff, solving the
optimization problem:

max min
i=1,...,n

(P v)i

s.t. v ≥ 0

1T v = 1

(4)

The optimal value here is p∗
2.
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Mixed strategies for matrix games
Duality and Equivalence
It’s generally advantageous to know the opponent’s strategy, but surprisingly, in mixed strategy matrix games, this
advantage disappears. The key lies in duality: the problems above are Lagrange duals. By formulating player 1’s
problem as a linear program and introducing Lagrange multipliers, we find that the dual problem matches player 2’s
problem. Due to strong duality in feasible linear programs, p∗

1 = p∗
2, showing no advantage in knowing the

opponent’s strategy.

Formulating and Solving the Lagrange Dual
We approach problem Equation 3 by setting it up as a linear programming (LP) problem. The goal is to minimize a
variable t, subject to certain constraints:

1. u ≥ 0,
2. The sum of elements in u equals 1 (1T u = 1),
3. P T u is less than or equal to t times a vector of ones (P T u ≤ t1).

Here, t is an additional variable in the real numbers (t ∈ R).

Constructing the Lagrangian
We introduce multipliers for the constraints: λ for P T u ≤ t1, µ for u ≥ 0, and ν for 1T u = 1. The Lagrangian is
then formed as:

L = t + λT (P T u − t1) − µT u + ν(1 − 1T u) = ν + (1 − 1T λ)t + (P λ − ν1 − µ)T u
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1 = p∗
2, showing no advantage in knowing the

opponent’s strategy.

Formulating and Solving the Lagrange Dual
We approach problem Equation 3 by setting it up as a linear programming (LP) problem. The goal is to minimize a
variable t, subject to certain constraints:

1. u ≥ 0,
2. The sum of elements in u equals 1 (1T u = 1),
3. P T u is less than or equal to t times a vector of ones (P T u ≤ t1).

Here, t is an additional variable in the real numbers (t ∈ R).

Constructing the Lagrangian
We introduce multipliers for the constraints: λ for P T u ≤ t1, µ for u ≥ 0, and ν for 1T u = 1. The Lagrangian is
then formed as:

L = t + λT (P T u − t1) − µT u + ν(1 − 1T u) = ν + (1 − 1T λ)t + (P λ − ν1 − µ)T u

Applications v § } 24
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Mixed strategies for matrix games
Defining the Dual Function

The dual function g(λ, µ, ν) is defined as:

g(λ, µ, ν) =
{

ν if 1T λ = 1 and P λ − ν1 = µ

−∞ otherwise

Solving the Dual Problem
The dual problem seeks to maximize ν under the following conditions:

1. λ ≥ 0,
2. The sum of elements in λ equals 1 (1T λ = 1),
3. µ ≥ 0,
4. P λ − ν1 = µ.

Upon eliminating µ, we obtain the Lagrange dual of Equation 3:

max ν

s.t. λ ≥ 0

1T λ = 1
P λ ≥ ν1

Conclusion
This formulation shows that the
Lagrange dual problem is
equivalent to problem Equation 4.
Given the feasibility of these linear
programs, strong duality holds,
meaning the optimal values of
Equation 3 and Equation 4 are
equal.

Applications v § } 25
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