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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(=),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction
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flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(=),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

P [l = 1: 7 (@), )] < (1 @)llallAl2
(@) k) = 17 @) allkll> = — 1 @)

Thus, the direction of the antigradient

L @)
fw+ah) < f(x) Tl

gives the direction of the steepest local decreasing of the function f.

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(=),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

P [l = 1: 7 (@), )] < (1 @)llallAl2
(@) k) = 17 @) allkll> = — 1 @)

Thus, the direction of the antigradient

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

L @)
flx+ah) < f(z) @
gives the direction of the steepest local decreasing of the function f.
f(@) + alf'(x), h) + o(a) < f(z) The result of this method is
and going to the limit at « — 0: Tor1 =z — af (zx)

(f'(=),h) <0
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Gradient flow ODE

Let’s consider the following ODE, which is referred to as the Gradient Flow equation.

dx ,
= 1) (GF)
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Gradient flow ODE

Let’s consider the following ODE, which is referred to as the Gradient Flow equation.

dx ,
— =— t GF
= 1) (GF)
and discretize it on a uniform grid with o step:
Tk4+1 — Tk Y
— = f=),
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Gradient flow ODE

Let’s consider the following ODE, which is referred to as the Gradient Flow equation.

dx ,
— =— t GF
= 1) (GF)
and discretize it on a uniform grid with o step:
Tk4+1 — Tk Y
— = f=),

where z;, = z(t;) and o = tg4+1 — ty - is the grid step.
From here we get the expression for xx41

Toy1 =z — oof (zk),

which is exactly gradient descent.
Open In Colab &
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Gradient flow ODE

Let's consider the following ODE, which is referred to as the Gradient Flow equation. ajectores with Contour Pt

and discretize it on a uniform grid with o step:

dx ,
o = )
T = f (),

where z;, = z(t;) and o = tg4+1 — ty - is the grid step.
From here we get the expression for xx41

Try1 =k — af (wr),

which is exactly gradient descent.
Open In Colab &
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Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate a:

Loss value 0.87
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Exact line search aka steepest descent
ay = arg min f(zr+1) = arg min f(zr — aV f(zk))
acRt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(xk))
acRt
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Exact line search aka steepest descent

ay = arg min f(zr+1) = arg min f(zr — aV f(zk))
a€Rt a€cRt

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — aVf(zk))
a€RT

Optimality conditions:
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Exact line search aka steepest descent
ay = arg min f(zr+1) = arg min f(zr — aV f(zk))
a€eRt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — aVf(zk))
a€RT

Optimality conditions:

Vf(zre1) Vi(zr) =0

Figure 2: Steepest
Descent

Open In Colab &
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRd 2
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
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Coordinate shift

Consider the following quadratic optimization problem:
1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zcRd zeRrd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQT
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRrd 2 .
® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A =QAQ" .

® Let’s show, that we can switch coordinates to make an analysis a little bit
casier. Let & = QT (x — 2*), where z* is the minimum point of initial
function, defined by Ax* = b. At the same time z = Q% + z~.

-
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRrd 2 .
® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A =QAQ" .

® Let’s show, that we can switch coordinates to make an analysis a little bit
casier. Let & = QT (x — 2*), where z* is the minimum point of initial
function, defined by Ax* = b. At the same time z = Q% + z~.

-

F(#) = L(@0 27T A2 +a%) 1T (@2 4+ 07)
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQT

® Let’s show, that we can switch coordinates to make an analysis a little bit
casier. Let & = QT (x — 2*), where z* is the minimum point of initial
function, defined by Ax* = b. At the same time z = Q% + z~.

f(@)

2(Qi+27)TA@2+a7) b (Qd +a7)

= 3#7QTAQs + (1) AQs + (@) AW~ b Qi — b
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Coordinate shift

Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQT

® Let’s show, that we can switch coordinates to make an analysis a little bit
casier. Let & = QT (x — 2*), where z* is the minimum point of initial
function, defined by Ax* = b. At the same time z = Q% + z~.

f(@) = %(Q:i: +2°)TAQz + ") — b (QF + 27)
_ %f:TQTAQi’ + (@) AQs + %(x*)TA(x*)T —VTQi— b2

1
= 53" A%
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

J}‘k+1 _ Ztk _ aka(xk)

‘f - Pay"; Strongly convex quadratics 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

" = b — oV fah) = 2F - oFAL”
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

" = b — oV fah) = 2F - oFAL”

= (I-a"A)z”
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

2" =2b — oV f(aF) = 2F — oFALF
= (I-a"A)z”
k+1

zoy =(1- akk(i))xﬁ-) For i-th coordinate
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

2" =2b — oV f(aF) = 2F — oFALF
= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate

k k k
zy ! = (1= a"A@) s
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

‘f - 510;!; Strongly convex quadratics 0 O
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1
-1<l—apu<l1
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1
-1<l—apu<l1

2
a< — ap >0
I
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1
-1<l—apu<l1

2
a< — ap >0
I
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Convergence analysis
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1
—1<l—-an<l1 -1<1l-al<1

2
a< — ap >0
I
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Convergence analysis
Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)
T = 2F — oVt = 2F — oF AP
= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

—1<l—-an<l1 -1<1l-al<1
2 2

a< — ap >0 a< — al >0
n L
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Convergence analysis
Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)
T = 2F — oVt = 2F — oF AP
= (I-a"A)z”
xfj)'l =(1- akk(i))xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

—1<l—-an<l1 -1<1l-al<1
2 2

a< — ap >0 a< — al >0
n L
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Convergence analysis
Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)
T = 2F — oVt = 2F — oF AP
= (I-a"A)z”
xfj{l =(1- akkm)xﬁ-) For i-th coordinate
azﬁ";l =(1- ak)\(i))kx?i)

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.
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Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate
ziyt = (1—a"Ap) "l

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.

— mi .
‘f fnﬂ Strongly convex quadratics

Now we would like to tune « to choose the best (lowest)
convergence rate

p* = min p(a)
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Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate
ziyt = (1—a"Ap) "l

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.

— mi .
‘f fnﬂ Strongly convex quadratics

Now we would like to tune « to choose the best (lowest)
convergence rate

p" =min p(a) = minmax |1 — aAy|


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate
ziyt = (1—a"Ap) "l

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.

— mi .
‘f fnﬂ Strongly convex quadratics

Now we would like to tune « to choose the best (lowest)
convergence rate

p" =min p(a) = minmax |1 — aAy|

— min{[1 - anl,|1 - aL|}
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Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate
ziyt = (1—a"Ap) "l

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.

— mi .
‘f fnﬂ Strongly convex quadratics

Now we would like to tune « to choose the best (lowest)
convergence rate

p" =min p(a) = minmax |1 — aAy|
— min {|1 - ol |1 — aLl}

*

o 1—-a'p=a'L-1
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Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP

= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate
ziyt = (1—a"Ap) "l

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.
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‘f fnﬂ Strongly convex quadratics
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convergence rate
p" =min p(a) = minmax |1 — aAy|
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Convergence analysis
1

Now we can work with the function f(z) = 227 Az with z* = 0 without loss of generality (drop the hat from the )

)

T = 2F — oVt = 2F — oF AP
= (I-a"A)z”

xfj)'l =(1- akkm)xﬁ-) For i-th coordinate

k k k
zy ! = (1= a"A@) s

k — a. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = it > 0, Amax = L > p.

1 —aul <1 1-al| <1

-1<l—apu<l1 —-1<1l1—-alL<1
2 2

a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.

— mi .
‘f fnﬂ Strongly convex quadratics

Now we would like to tune « to choose the best (lowest)
convergence rate

p" =min p(a) = minmax |1 — aAy|

— min{[1 - anl,|1 - aL|}

*
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Convergence analysis

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)
Now we would like to tune « to choose the best (lowest)
T = 2F — oVt = 2F — oF AP convergence rate
= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate p = min pla) = min max [T — A
l’ﬁ-‘)—l = (1—0Lk)\(1))k113[()1) :mljn{uiaﬂ‘?'l*al"}
Let’s use constant stepsize o = o. Convergence o l-ap=o0l-1
condition: o = 2 ot = L—p
pla) =max |1 —aly)| <1 p+L L+p
K3
k
Remember, that Amin = 1 > 0, Amax = L > p1. 2R = L—p 20
L+p
1 —aul <1 1-al| <1
-1<l—apu<l1 —-1<1l1—-alL<1
2 2
a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.
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Convergence analysis

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the #)
Now we would like to tune « to choose the best (lowest)
T = 2F — oVt = 2F — oF AP convergence rate
= (I-a"A)z”
xfj)'l =(1- akkm)xﬁ-) For i-th coordinate p = min pla) = min max [T — A
l’ﬁ-‘)—l = (1—0Lk)\(1))k113[()1) :mljn{uiaﬂ‘?'l*al"}
Let’s use constant stepsize o = o. Convergence o l-ap=o0l-1
condition: o = 2 ot = L—p
pla) =max |1 —aly)| <1 p+L L+p
¢ I k I 2k
Remember, that Amin = pt > 0, Amax = L > pu. P (2T HY) 0 fa*th) = LTH £(z°)
L+p L+p
1 —aul <1 1-al| <1
-1<l—apu<l1 —-1<1l1—-alL<1
2 2
a< — ap >0 a< — al >0
n L

a < 2 is needed for convergence.
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Convergence analysis

So, we have a linear convergence in the domain with rate pem
condition number of the quadratic problem.

k—1

=l _q

2
k41"

where Kk = % is sometimes called

Iterations to decrease function gap 10 times

K p Iterations to decrease domain gap 10 times

1.1 0.05 1 1
2 0.33 3 2
5 0.67 6 3
10 0.82 12 6
50 0.96 58 29
100 0.98 116 58
500 0.996 576 288
1000 0.998 1152 576

‘f — min
e

Strongly convex quadratics
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Polyak-Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some p > 0,

IVF @) = 2u(f(2) — f7) Va
It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. ®Link to the code
f(z) = 2 4 3sin’(z)

Function, that satisfies
Polyak- Lojasiewicz condition

— f(x) = x2 + 3sin?(x)

-3 -2 -1 0 1 2 3

‘f - ;nylr; Polyak-Lojasiewicz smooth case
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Polyak-Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some p > 0,

IVF @) = 2u(f(2) — f7) Va
It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. %@Link to the code

(y —sinx)?
2

f(z) = 2 4 3sin’(z) fla,y) =

Function, that satisfies Non-convex PL function
Polyak- Lojasiewicz condition

—— f(x) = x2 + 3sin?(x)

4.0
35
3.0
25
2.0
15
10
05

-3 -2 -1 0 1 2 3

‘f - wl} Polyak-Lojasiewicz smooth case X 0 O


https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis

i Theorem

Consider the Problem

f(z) = min
z€RC

and assume that f is u-Polyak-Lojasiewicz and L-smooth, for some L > p > 0.

Consider (z*)ren a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize
satisfying 0 < o < +. Then:

fa®) = £ < 1= ap)"(f(@") = 7).

‘f - 5“.}‘; Polyak-Lojasiewicz smooth case 0 O


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis
We can use L-smoothness, together with the update rule of the algorithm, to write

FEY < @) + (TR, =) + St =

‘f - §ny1r; Polyak-Lojasiewicz smooth case

k
I®
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Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write
L
FE) < f@) + (V)" = o) + DYl -

= £(*) — al VAP + VAP

‘f - §ny1r; Polyak-Lojasiewicz smooth case

k
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Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write

P < FF) + (V) = ot 4 Sl o

= £(*) — al VAP + VAP

= f(z")

a

5 (2= La) |V £ ("))

‘f - §ny1r; Polyak-Lojasiewicz smooth case
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Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write

F@Y) < F@F) + (VIR 2 — )+ DYt k)2

2
= £(*) — al VAP + VAP
= f(a") = 5 (2= La) [ Vf (")
< @) = SIVFEH,

‘f - §ny1r; Polyak-Lojasiewicz smooth case


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write

F@Y) < F@F) + (VIR 2 — )+ DYt k)2

2
= £(*) — al VAP + VAP
= f(a") = 5 (2= La) [ Vf (")
< @) = SIVFEH,
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Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write

F@Y) < F@F) + (VIR 2 — )+ DYt k)2

2
= £(*) — al VAP + VAP
= f(a") = 5 (2= La) [ Vf (")
< @) = SIVFEH,

where in the last inequality we used our hypothesis on the stepsize that oL < 1.

— mi P
‘f 510;1; Polyak-Lojasiewicz smooth case


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis

We can use L-smoothness, together with the update rule of the algorithm, to write

F@Y) < F@F) + (VIR 2 — )+ DYt k)2

2
= £(*) — al VAP + VAP
= f(a") = 5 (2= La) [ Vf (")
< @) = SIVFEH,

where in the last inequality we used our hypothesis on the stepsize that oL < 1.

We can now use the Polyak-Lojasiewicz property to write:

Fa™) < f@®) —ap(f@®) = 7).

The conclusion follows after subtracting f* on both sides of this inequality and using recursion.

— mi P
‘f 5“.}‘; Polyak-Lojasiewicz smooth case
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Any u-strongly convex differentiable function is a PL-function
i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

1) = f(@) + V@) (y =) + Gy - o]}

Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

‘f - ;nylr; Polyak-Lojasiewicz smooth case
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

1) = f(@) + V@) (y =) + Gy - o]}

Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =

‘f - ;nylr; Polyak-Lojasiewicz smooth case
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:
f@) 2 f@) + V@) (v —2) + Gy — 3
Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =

‘f - Pay"; Polyak-Lojasiewicz smooth case
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:
f@) 2 f@) + V@) (v —2) + Gy — 3
Putting y = z™:
J@) 2 f(@) + V(@) (@ —2) + Glla” — 2l
f@) = f@") < Vi@ (@ =) = Glla” ol =
( —H(m*—x)>T(xfx*):
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:
f@) 2 f@) + V@) (v —2) + Gy — 3
Putting y = z™:
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Any u-strongly convex differentiable function is a PL-function

i Theorem
If a function f(z) is differentiable and p-strongly convex, then it is a PL function.
Proof
By first order strong convexity criterion:

1) = f(@) + V@) (y =) + Gy - o]}

Let a = ﬁVf(x) and
b= (e — ") — V()

Putting y = z™:

f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol
f@) = f(@) < V@) (@ - a) = Sl — o} =
(Vi —H(m*—x)>T(xfx*):
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion: Let @ = ﬁVf(x) and

T b= VR — %) - L V()
fly) = f@) + V(@) (y—2) + Sy — =2 Then a+b— \/ﬁ(xf_ ) and
Putting y = z*: a*b:%v‘f(x)f\/ﬁ(:cfx*)

J@) 2 f(@) + V(@) (@ —2) + Glla” — 2l
f@) = f(@) < V@) (@ - a) = Sl — o} =
( fﬁ(m*fx)>T(xfx*):

2

H
/‘\
S
<
:’:
é
a*
|
8
N
H
=
8
|
g*
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Any u-strongly convex differentiable function is a PL-function

1 2

\/ﬁvf (z)

f@) - fa) < 5 (invmn% - H\/ﬁ(x ~a%)

2

‘f - ;nyul Polyak-Lojasiewicz smooth case
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Any u-strongly convex differentiable function is a PL-function

1 2

\/ﬁVf (z)

2

f@) - fa) < 5 (invmn% - H\/ﬁ(x ~a%)

* 1 2
fl@) = f(@7) < Envf(f”)”z,
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Any u-strongly convex differentiable function is a PL-function

1 2

\/ﬁVf (z)

2

f@) - fa) < 5 (invmn% - H\/ﬁ(x ~a%)

* 1 2
fl@) = f(@7) < Envf(f”)”z,
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Any u-strongly convex differentiable function is a PL-function

1
I

53— x—z" L x
IV f()ll2 H\/ﬁ( ) \/ﬁvf()

N :
f(m)—f<w><2< )

* 1 2
fl@) = f(@7) < ﬂllvf(w)\lz,

which is exactly the PL condition. It means, that we already have linear convergence proof for any strongly convex
function.

‘f - ;nylr; Polyak-Lojasiewicz smooth case 0 O 13
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Smooth convex case

i Theorem

Consider the Problem

f(xz) — min
z€RE

and assume that f is convex and L-smooth, for some L > 0.

Let (a:k)keN be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a
stepsize satisfying 0 < a < % Then, for all z* € argmin f, for all K € N we have that

[

k *
fat) - <

— min
‘f Tz Smooth convex case
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Convergence analysis

® As it was before, we first use smoothness:

FE) < F8) + VR, = o)+ Dl R

= ") = all VAN P + SV
= fa") = 5 (2= La) | VF ")) ()
< 1) = SIVFEHIP,

Ft) = f@) 2 L IVEENP < 1

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.
1

That is why we often will use o = +.

‘f - 511;1; Smooth convex case 0 O 15


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence analysis

® As it was before, we first use smoothness:

FE) < F8) + VR, = o)+ Dl R

= ") = all VAN P + SV
= fa") = 5 (2= La) | VF ")) ()
< 1) = SIVFEHIP,

Ft) = f@) 2 L IVEENP < 1

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.

That is why we often will use ¢ = 1

-
® After that we add convexity:

()
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Convergence analysis

® As it was before, we first use smoothness:

FE) < F8) + VR, = o)+ Dl R

= ") = all VAN P + SV
= fa") = 5 (2= La) | VF ")) ()
< 1) = SIVFEHIP,

Ft) = f@) 2 L IVEENP < 1

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.
That is why we often will use ¢ = 1

-
® After that we add convexity:

f) = f(@) +(Vf(2),y — x) ()

‘f - ﬁ}‘i Smooth convex case 0 O 15
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Convergence analysis

® As it was before, we first use smoothness:

FE) < F8) + VR, = o)+ Dl R

= ") = all VAN P + SV
= fa") = 5 (2= La) | VF ")) ()
< 1) = SIVFEHIP,

Ft) = f@) 2 L IVEENP < 1

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.
That is why we often will use ¢ = 1

-
® After that we add convexity:

fy) > f(z) +(Vf(z),y —x) with y = 2",z = 2" @

‘f - ﬁ}‘i Smooth convex case 0 O 15
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Convergence analysis

® As it was before, we first use smoothness:

FE) < F8) + VR, = o)+ Dl R

Fa) ~ @l THE) I + E V) P
f(l’k) D)
@) = SIVFEHIP,

(2 - La) [V £(z")]* @

IA

Ft) = f@) 2 L IVEENP < 1

Typically, for the convergent gradient descent algorithm the higher the learning rate the faster the convergence.

That is why we often will use ¢ = 1

® After that we add convexity: v
fy) > f(z) +(Vf(z),y —x) with y = 2",z = 2" @
F@*) = 7 <(Vf(h), 2" — o)

‘f - ﬁ}‘i Smooth convex case 0 O 15
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Convergence analysis
® Now we put Equation 2 to Equation 1:

— min
‘f Tz Smooth convex case
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Convergence analysis
® Now we put Equation 2 to Equation 1:

@) < £@h) = SIVHOI < £+ (VFEH), 2 —a) = SIV )

— min
‘f Tz Smooth convex case
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Convergence analysis
® Now we put Equation 2 to Equation 1:

@) < £@h) = SIVHOI < £+ (VFEH), 2 —a) = SIV )

= "+ (Vf(a"), 2" — 2" — SV [ ("))

— min
‘f Tz Smooth convex case
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Convergence analysis
® Now we put Equation 2 to Equation

1:

@) < £@h) = SIVHOI < £+ (VFEH), 2 —a) = SIV )

= [T+ (Vi) e" o = SV @)

N 1
=/t 5

— min
‘f Tz Smooth convex case

<an(:ck),2 (:ck -z - %Vf(x’“)»
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Convergence analysis
® Now we put Equation 2 to Equation 1:

@) < £@h) = SIVHOI < £+ (VFEH), 2 —a) = SIV )
= F"+(Vah)at =t = SV
= £+ 5 (aVIE 2 (#F —o" - §9SE))

Let a = 2" —z* and b = z* — z* — aV f(z").

— min
‘f Tz Smooth convex case
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Convergence analysis
® Now we put Equation 2 to Equation 1:

FE) < 60 = SIVIEHIE < 77+ (V1) — o) - SI9560)1E
=T+ (Vf@a"),a" —a" - *Vf(wk»
:f*+i<an( ),2 (::: -z - %Vf(xk))>

Let a = 2" — 2" and b = 2" — 2" — aV f(z*). Then a +b=aVf(z )anda—b—Q(a: —z* = 5V f(x ))

‘f - §ny1r; Smooth convex case 0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

FE) < 60 = SIVIEHIE < 77+ (V1) — o) - SI9560)1E
=T+ (Vf@a"),a" —a" - *Vf(wk»
:f*+i<an( ),2 (::: -z - %Vf(xk))>

Let a = 2" — 2" and b = 2" — 2" — aV f(z*). Then a +b=aVf(z )anda—b—Q(a: —z* = 5V f(x ))

JEH) < 17 ol =1 = e - o — av I )]

‘f - §ny1r; Smooth convex case 0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

FE) < 60 = SIVIEHIE < 77+ (V1) — o) - SI9560)1E
=+ (Vf(@a"),a" — 2" - *Vf(wk»
:f*+i<an( ),2 (::: -z - %Vf(xk))>
Let a = 2" — 2" and b = 2" — 2" — aV f(z*). Then a +b=aVf(z )anda—b—2(az —a" = 5Vf(e ))
f(xk+1) < f* + i [”mk — x*Hg — Hmk —z* - Clvf(xk)”%]

* 1 * *
< S g et =2 — Il - ]

‘f - §ny1r; Smooth convex case 0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

F@) < f@*) = SIVIEHIP < £+ (VF@E"), " =) = SV
=+ (Vf(@a"),a" — 2" - —Vf(wk»
:f*+i<an( ),2 (:1: o %Vf(xk))>
Let a = 2" — 2" and b = 2" — ¥ — aV f(z"). Then a + b= aVf(z*) and a—b—2(a: —z* = 5V f(x ))
L g [|| — "3 — [l2* — 2" — aVf(")|I3]
e [|| — "3 — [l2* — 2"|3]

20 (f@") = ) < lla® = 2|3 — [l — 2"

‘f - §ny1r; Smooth convex case 0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

FE) < 60 = SIVIEHIE < 77+ (V1) — o) - SI9560)1E
=+ (Vf(a:k),x'“ —a - ﬁvmk»

Let a = 2" —z* and b = 2" — 2" — aV f(z"). Then a—l—b:och(m ) and a—b—2(1: —z* = 5V f(x ))
FE <o [|| =23~ [|l2" — 2" —aVf(h)|3]
<+, [|| — "I} = [la"" — 23]

20 (f@") = ) < lla® = 2|3 — [l — 2"

® Now suppose, that the last line is defined for some index ¢ and we sum over i € [0,k — 1]. Almost all
summands will vanish due to the telescopic nature of the sum:

‘f - ﬁ}‘i Smooth convex case D0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

F@) < f@*) = SIVIEHIP < £+ (VF@E"), " =) = SV
= f"+ (V") e — 2" - gvf(wk»
= 14 5 (aV 62 (¢ =0 = §V56Y) )
Let a = 2" — 2" and b = 2" — ¥ — aV f(z"). Then a + b= aVf(z*) and a—b—Q(z —z* = 5V f(x ))
Sy < o [n —2*|} — lla* — 2" — aVf(@")|3]
e [|| — 2" |f — "t — " )3]
2a (f(e 1) = ) < la* — 2|3 — 2" — 2

® Now suppose, that the last line is defined for some index ¢ and we sum over i € [0,k — 1]. Almost all
summands will vanish due to the telescopic nature of the sum:

ZaZ 2 = ) < e = 27|f3 — 2 — 27|13 (3)

‘f - 511;1; Smooth convex case 0 O 16
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Convergence analysis
® Now we put Equation 2 to Equation 1:

FE) < 60 = SIVIEHIE < 77+ (V1) — o) - SI9560)1E
= F"+(Vah)at =t = SV

=+ 5 (avih),2 (o 0 - §56Y))
Let a = 2" —z* and b = z* — z* — aV f(z"). Thena—l—b:och(m )anda—b—Q(z —z* = 5V f(x ))

FE <o [II —a"[|3 — lla" — 2" — aVf(a")|3]
<+, [II — "3 — [l — 2"|3]
llz™*h — 23

k41
2a (f(=") = f7) < la* — 2”3 -
® Now suppose, that the last line is defined for some index ¢ and we sum over i € [0,k — 1]. Almost all
summands will vanish due to the telescopic nature of the sum:

ZaZ 2 = ) < e =273 — |2 — 2713 < [|2° — 273

— min
‘f Tz Smooth convex case
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Convergence analysis

® Due to the monotonic decrease at each iteration f(z'™1) < f(z¢):

e
-

kf(z®) <Y fa™)

0

7

— min
‘f Tz Smooth convex case
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Convergence analysis

® Due to the monotonic decrease at each iteration f(z'™1) < f(z¢):

e
-

kf(z®) <Y fa™)

0

7

® Now putting it to Equation 3:

— min
‘f Tz Smooth convex case
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Convergence analysis

® Due to the monotonic decrease at each iteration f(z'™1) < f(z¢):

e
-

kf(z®) <Y fa™)

0

7

® Now putting it to Equation 3:

20k f(x*) — 20k f* <20¢Z 't

— min
‘f Tz Smooth convex case

—f7) <ll=” = 2”13
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Convergence analysis

® Due to the monotonic decrease at each iteration f(z'™1) < f(z¢):

e
-

kf(z®) <Y fa™)

0

7

® Now putting it to Equation 3:

20k f(z*) — 2akf* < 20[2 't *) < ||z —z*|3

Hwo — 23

f@*) - <

— min
‘f Tz Smooth convex case
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Convergence analysis

® Due to the monotonic decrease at each iteration f(z'™1) < f(z¢):

e
-

kf(z®) <Y fa™)

0

7

® Now putting it to Equation 3:

20k f(z*) — 2akf* < 20[2 't ) < ||z —z*|3

Hwofw I3 o Lllz® — "3

k *
J@) =< T = 2%k

— min
‘f Tz Smooth convex case
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How optimal is O (%)

® |s it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

lf%ﬁ}‘i Lower bounds 0 O
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How optimal is O (%)

® |s it somehow possible to understand, that the obtained convergence is the fastest possible with this class of

problem and this class of algorithms?
® The iteration of gradient descent:

$k+1 _ .’,Ek _ aka(;rk)
— xk*l _ ak*lvf(xkfl) _ Oékvf(l'k)

k
_ Z Q"I ()
i=0

— min
‘f Tz Lower bounds
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How optimal is O (%)

® |s it somehow possible to understand, that the obtained convergence is the fastest possible with this class of

problem and this class of algorithms?
® The iteration of gradient descent:

$k+1 _ .’,Ek _ aka(;rk)
_ xk*l _ ak*lvf(xkfl) _ Oékvf(l'k)

k
— 0 Zakfivf(xkfi)
i=0

® Consider a family of first-order methods, where

Yea® +span {VF(2°),Vf(a'),...,VFf(a")} (4)

— min
‘f Tz Lower bounds
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Smooth convex case

i Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

. ; .o 3L —a*|3
YN | e | P
in @) =12 =y

‘f - W;rﬁ Lower bounds
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Smooth convex case

i Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

. ; .o 3L —a*|3
YN | e | P
in @) =12 =y

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (,712)

‘f% 5“.}‘; Lower bounds 0 O 19
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Smooth convex case

i Theorem

There exists a function f that is L-smooth and convex such that any method 4 satisfies

. ; .o 3L —a*|3
YN | e | P
in @) =12 =y

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (,712)
® The key to the proof is to explicitly build a special function f.

— min
‘f Tz Lower bounds
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Nesterov’s worst function
o letd=2k+1and A e R

‘f - ;nylr; Lower bounds

(e RN e s N en)

20
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Nesterov’s worst function
o letd=2k+1and A e R

2 -1 0 0 0
-1 2 -1 0 0
o -1 2 -1 0
0 0o -1 2 0
0 0 0 0 2
® Notice, that
d—
" Az = 2[1)* + z[d)? Z [i] — z[i + 1])°,

and, from this expression, it's simple to check
0= A=4l.

‘f - §ny1r; Lower bounds

20
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Nesterov’s worst function
e Letd=2k+1and A € R¥9,

2 -1 0 0 0
-1 2 -1 0 0
o -1 2 -1 0
0 0o -1 2 0
0 0 0 0 2
® Notice, that
d—

" Az = 2[1)* + z[d)? Z [i] — z[i + 1])°,

and, from this expression, it's simple to check
0= A=4l.
® Define the following L-smooth convex function

J@) = CaTAr - T

3 1 (x,e1).

— min
‘f Tz Lower bounds
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Nesterov’s worst function
e Letd=2k+1and A € R¥*¢9, ® The optimal solution z* satisfies Az* = e1, and

solving this system of equations gives

2 -1 0 0 0 _

-1 2 -1 0 0 ,ps (]
| =1— ——r

o -1 2 -1 0 [ d+1

0 0o -1 2 0

0 0 0 0 2

® Notice, that
d—

" Az = z[1)? + z[d)? Z [i] — z[i + 1])°,

and, from this expression, it's simple to check
0= A=4l.
® Define the following L-smooth convex function

f@)=LoTan - L

8 4 <$761>'

lf%ﬁ}‘i Lower bounds 0 0
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Nesterov’s worst function
e Letd=2k+1and A € R¥*¢9, ® The optimal solution z* satisfies Az* = e1, and

solving this system of equations gives

2 -1 0 0 0 .
-1 2 -1 0 0 *1 !
't =1— ——,
0 -1 2 -1 0 . d+1
o 0 -1 2 0 ® And the objective value is
. . . . . . * L * * L *
o 0 0 0 - 2 fla") = ga' T Ax" — 2" er)
® Notice, that :_§<x*761>:_§ (1_d41r1)'

" Az = 2[1)* + z[d)? Z [i] — z[i + 1])°,

and, from this expression, it's simple to check
0= A=4l.
® Define the following L-smooth convex function

J@) = CaTAr - T

3 1 (x,e1).

‘f%w‘; Lower bounds 0 0
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