
Large models training

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

� � � 1

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.

Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.

Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.

Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with � parameters: 2� bytes
for fp16 parameters and gradients, 12� bytes for optimizer states (parameters,
momentum, variance).

• Total: 16� bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Temporary Bu�ers:

• Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single bu�er.

• For large models, temporary bu�ers can consume substantial memory (e.g., 6GB
for 1.5B parameter model with fp32 bu�er).

Memory Fragmentation:

• Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

• In some cases, over 30% of memory remains unusable due to fragmentation.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Temporary Bu�ers:

• Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single bu�er.

• For large models, temporary bu�ers can consume substantial memory (e.g., 6GB
for 1.5B parameter model with fp32 bu�er).

Memory Fragmentation:

• Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

• In some cases, over 30% of memory remains unusable due to fragmentation.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Temporary Bu�ers:

• Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single bu�er.

• For large models, temporary bu�ers can consume substantial memory (e.g., 6GB
for 1.5B parameter model with fp32 bu�er).

Memory Fragmentation:

• Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

• In some cases, over 30% of memory remains unusable due to fragmentation.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


GPT-2 training Memory footprint
Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
bu�ers, and fragmented memory.
Temporary Bu�ers:

• Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single bu�er.

• For large models, temporary bu�ers can consume substantial memory (e.g., 6GB
for 1.5B parameter model with fp32 bu�er).

Memory Fragmentation:

• Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

• In some cases, over 30% of memory remains unusable due to fragmentation.

GPT-2 training Memory footprint � � � 2

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Large batch training
1

256 512 1k 2k 4k 8k 11k

mini-batch size

0.2

0.22

0.24

0.26

0.28

0.3

tim
e

 p
e

r 
ite

ra
tio

n
 (

se
cs

)

0.5

1

2

4

8

16

tim
e

 p
e

r 
e

p
o

ch
 (

m
in

s)

1Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Large batch training � � � 3

Daniil Merkulov

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Large batch training
2

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t 
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

2Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Large batch training � � � 4

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Large batch training
3

E�ective batch size (kn) – top-1 error (%)
256 0.05 23.92 ± 0.10
256 0.10 23.60 ± 0.12
256 0.20 23.68 ± 0.09
8k 0.05 · 32 24.27 ± 0.08
8k 0.10 · 32 23.74 ± 0.09
8k 0.20 · 32 24.05 ± 0.18
8k 0.10 41.67 ± 0.10
8k 0.10 ·

Ô
32 26.22 ± 0.03

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of – = 0.1
works best for kn = 256 (23.68% error). The linear scaling rule suggests – = 0.1 · 32 when kn = 8k, which again
gives best performance (23.74% error). Other ways of scaling – give worse results.

3Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Large batch training � � � 5

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability.
The linear scaling rule

4 suggests multiplying the learning rate by the same factor as the increase in batch size:

–new = –base · Batch Sizenew

Batch Sizebase

The square root scaling rule
5 proposes scaling the learning rate with the square root of the batch size increase:

–new = –base ·
Ú

Batch Sizenew

Batch Sizebase

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves
well for SGD.

4Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
5Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

Large batch training � � � 6

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/2006.09092
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradual warmup
6

Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning
rate from a small value to the target value over a few epochs. This is defined as:

–t = –max · t
Tw

where t is the current iteration and Tw is the warmup duration in iterations. In the original paper, authors used first
5 epochs for gradual warmup.

0 20 40 60 80

epochs

20

30

40

50

60

70

80

90

100

tr
a
in

in
g
 e

rr
o
r 

%

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 24.84% 0.37

Figure 1: no warmup

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 25.88% 0.56

Figure 2: constant warmup

0 20 40 60 80

epochs

kn=256, = 0.1, 23.60% 0.12

kn= 8k, = 3.2, 23.74% 0.09

Figure 3: gradual warmup

6Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Large batch training � � � 7

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient accumulation

Gradient accumulation allows the e�ective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()

optimizer.step()
optimizer.zero_grad()

With gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
if (i+1) % accumulation_steps == 0:

optimizer.step()
optimizer.zero_grad()

Large batch training � � � 8

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient accumulation

Gradient accumulation allows the e�ective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()

optimizer.step()
optimizer.zero_grad()

With gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
if (i+1) % accumulation_steps == 0:

optimizer.step()
optimizer.zero_grad()

Large batch training � � � 8

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device

2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients

4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training � � � 9

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Distributed Data Parallel training

Distributed Data Parallel (DDP) 7 extends data parallelism across multiple nodes. Each node computes gradients
locally, then synchronizes with others. Below one can find di�erences from the PyTorch site. This is used by default
in �Accelerate library.

DataParallel DistributedDataParallel
More overhead; model is replicated and destroyed at

each forward pass
Model is replicated only once

Only supports single-node parallelism Supports scaling to multiple machines
Slower; uses multithreading on a single process and runs

into Global Interpreter Lock (GIL) contention
Faster (no GIL contention) because it uses

multiprocessing

7Getting Started with Distributed Data Parallel
MultiGPU training � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://pytorch.org/tutorials/beginner/ddp_series_theory.html
https://huggingface.co/docs/transformers/accelerate
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Naive model parallelism

Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing
memory load per GPU. Allows to work with the models, that won’t fit in the single GPU Poor resource utilization.

Figure 5: Model parallelism
MultiGPU training � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Pipeline model parallelism (GPipe)
8

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline,
allowing for overlapping computation and communication:

8GPipe: E�cient Training of Giant Neural Networks using Pipeline Parallelism
MultiGPU training � � � 12

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1811.06965
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Pipeline model parallelism (PipeDream)
9

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages
to maximize utilization and reduce idle time:

9PipeDream: Generalized Pipeline Parallelism for DNN Training
MultiGPU training � � � 13

Daniil Merkulov

https://arxiv.org/abs/1806.03377
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


ZeRO
10

10ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
MultiGPU training � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


LoRA
11

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + �W

where �W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64
• Usually applied to attention modules

h = Wnewx = W x + �W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models

MultiGPU training � � � 15

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


LoRA
11

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + �W

where �W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64

• Usually applied to attention modules

h = Wnewx = W x + �W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models

MultiGPU training � � � 15

Daniil Merkulov

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


LoRA
11

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + �W

where �W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64
• Usually applied to attention modules

h = Wnewx = W x + �W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models

MultiGPU training � � � 15

Daniil Merkulov

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


LoRA
11

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + �W

where �W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64
• Usually applied to attention modules

h = Wnewx = W x + �W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models
MultiGPU training � � � 15

Daniil Merkulov

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


LoRA
11

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0, 𝜎2)

𝑑

𝑟

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + �W

where �W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64
• Usually applied to attention modules

h = Wnewx = W x + �W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models
MultiGPU training � � � 15

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture

Forward pass

Backward pass

Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

� Important

The results obtained for the f nodes are needed to compute the b nodes.

MultiGPU training � � � 16

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture

Forward pass

Backward pass

Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

� Important

The results obtained for the f nodes are needed to compute the b nodes.

MultiGPU training � � � 16

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally ine�cient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

MultiGPU training � � � 18

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Checkpointed backpropagation

checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-o� between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More e�ective then vanilla approach.

MultiGPU training � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient checkpointing visualization

The animated visualization of the above approaches �

An example of using a gradient checkpointing �

MultiGPU training � � � 20

Daniil Merkulov

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Split the weight matrix into 2 well clustered factors
12

Figure 10: Scheme of post-training quantization approach.

12Quantization of Large Language Models with an Overdetermined Basis
Quantization � � � 21

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://arxiv.org/abs/2404.09737
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	GPT-2 training Memory footprint
	Large batch training
	MultiGPU training
	Quantization

