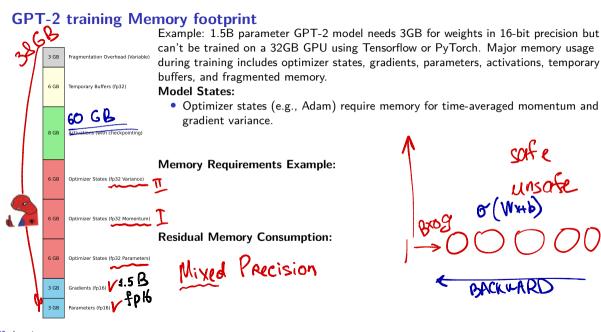
Large models training

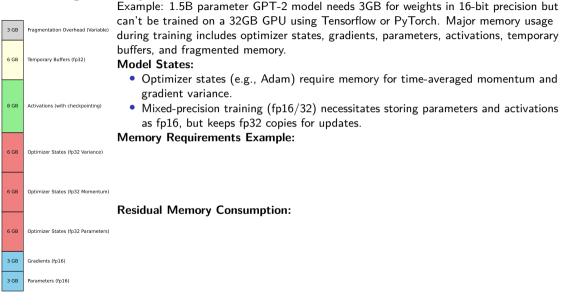
Daniil Merkulov 32 Cophrization for ML. Faculty of Computer Science. HSE University

GPT - 2

1.5 B



GPT-2 training Memory footprint



 $\rightarrow \min$

GPT-2 training Memory footprint Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but

		Example. 1.5D parameter of 1-2 model needs 50D for weights in 10-bit precision but
3 GB	Fragmentation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage during training includes optimizer states, gradients, parameters, activations, temporary
6 GB	Temporary Buffers (fp32)	buffers, and fragmented memory. Model States:
8 GB	Activations (with checkpointing)	 Optimizer states (e.g., Adam) require memory for time-averaged momentum and gradient variance. Mixed-precision training (fp16/32) necessitates storing parameters and activations as fp16, but keeps fp32 copies for updates.
6 GB	Optimizer States (fp32 Variance)	 Memory Requirements Example: Training with Adam in mixed precision for a model with Ψ parameters: 2Ψ bytes for fp16 parameters and gradients, 12Ψ bytes for optimizer states (parameters,
6 GB	Optimizer States (fp32 Momentum)	momentum, variance). Residual Memory Consumption:
6 GB	Optimizer States (fp32 Parameters)	
3 GB	Gradients (fp16)	
3 GB	Parameters (fp16)	

GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage 3 GB Fragmentation Overhead (Variable) during training includes optimizer states, gradients, parameters, activations, temporary buffers, and fragmented memory. 6 GB Temporary Buffers (fp32) Model States: • Optimizer states (e.g., Adam) require memory for time-averaged momentum and gradient variance. 8 GB Mixed-precision training (fp16/32) necessitates storing parameters and activations Activations (with checkpointing as fp16, but keeps fp32 copies for updates. Memory Requirements Example: • Training with Adam in mixed precision for a model with Ψ parameters: 2Ψ bytes 6 GB Optimizer States (fp32 Variance) for fp16 parameters and gradients. 12Ψ bytes for optimizer states (parameters. momentum, variance). 6 GB Optimizer States (fp32 Momentum) • Total: 16Ψ bytes; for GPT-2 with 1.5B parameters, this equals 24GB. **Residual Memory Consumption:** 6 GB Optimizer States (fp32 Parameters) 3 GB Gradients (fp16) 3 GB Parameters (fp16)

GPT-2 training Memory footprint

	U	Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
3 GB	Fragmentation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage during training includes optimizer states, gradients, parameters, activations, temporary
6 GB	Temporary Buffers (fp32)	 buffers, and fragmented memory. Model States: Optimizer states (e.g., Adam) require memory for time-averaged momentum and
8 GB	Activations (with checkpointing)	 Optimizer states (e.g., Adam) require memory for time-averaged momentum and gradient variance. Mixed-precision training (fp16/32) necessitates storing parameters and activations as fp16, but keeps fp32 copies for updates.
6 GB	Optimizer States (fp32 Variance)	 Memory Requirements Example: Training with Adam in mixed precision for a model with Ψ parameters: 2Ψ bytes for fp16 parameters and gradients, 12Ψ bytes for optimizer states (parameters,
6 GB	Optimizer States (fp32 Momentum)	momentum, variance). • Total: 16Ψ bytes; for GPT-2 with 1.5B parameters, this equals 24GB. Residual Memory Consumption:
6 GB	Optimizer States (fp32 Parameters)	 Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with sequence length 1K and batch size 32 requires ~60GB.
3 GB	Gradients (fp16)	
3 GB	Parameters (fp16)	

GPT-2 training Memory footprint Example: 1 5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but

		Example: Teb parameter et i E meder meder e eb fer melente in Te bit presenter bat
3 GB	Fragmentation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage during training includes optimizer states, gradients, parameters, activations, temporary
6 GB	Temporary Buffers (fp32)	buffers, and fragmented memory. Model States:
8 GB	Activations (with checkpointing)	 Optimizer states (e.g., Adam) require memory for time-averaged momentum and gradient variance. Mixed-precision training (fp16/32) necessitates storing parameters and activations as fp16, but keeps fp32 copies for updates.
6 GB	Optimizer States (fp32 Variance)	 Memory Requirements Example: Training with Adam in mixed precision for a model with Ψ parameters: 2Ψ bytes for fp16 parameters and gradients, 12Ψ bytes for optimizer states (parameters,
6 GB	Optimizer States (fp32 Momentum)	momentum, variance). • Total: 16Ψ bytes; for GPT-2 with 1.5B parameters, this equals 24GB. Residual Memory Consumption:
6 GB	Optimizer States (fp32 Parameters)	 Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with sequence length 1K and batch size 32 requires ~60GB.
3 GB	Gradients (fp16)	 Activation checkpointing can reduce activation memory by about 50%, with a 33% recomputation overhead.
3 GB	Parameters (fp16)	

GPT-2 training Memory footprint Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but

			Example. 1.56 parameter GF 1-2 model needs 5GB for weights in 10-bit precision but
	3 GB	Eragmontation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage during training includes optimizer states, gradients, parameters, activations, temporary
	6 GB	Tomporary Buffors (fp22)	buffers, and fragmented memory. Temporary Buffers:
	8 GB	Activations (with checkpointing)	 Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a single buffer.
	6 GB	Optimizer States (fp32 Variance)	Memory Fragmentation:
	6 GB	Optimizer States (fp32 Momentum)	
	6 GB	Optimizer States (fp32 Parameters)	
	3 GB	Gradients (fp16)	
I	3 GB	Parameters (fp16)	
Ì			

 $f \to \min_{x,y,z}$

GPT-2 training Memory footprint

 $f \to \min_{x,y,z}$

GPT-2 training Memory footprint

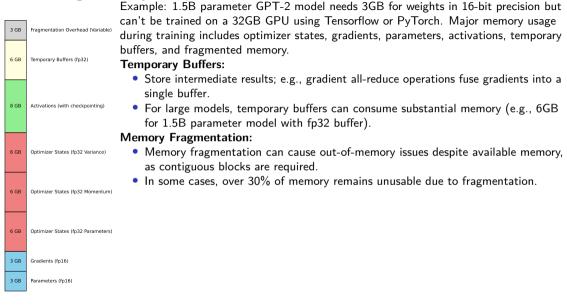
	_		
			Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
Γ	3 GB	Fragmentation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
ł			during training includes optimizer states, gradients, parameters, activations, temporary
	6 GB	Temporary Buffers (fp32)	buffers, and fragmented memory.
			Temporary Buffers:
			 Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a single buffer.
	8 GB	Activations (with checkpointing)	 For large models, temporary buffers can consume substantial memory (e.g., 6GB
			for 1.5B parameter model with fp32 buffer).
			Memory Fragmentation:
	6 GB	Optimizer States (fp32 Variance)	Wennery Hugmentation.
	6 GB	Optimizer States (fp32 Momentum)	
	6 GB	Optimizer States (fp32 Parameters)	
	0.00	opumizer states (ipsz Parameters)	
	3 GB	Gradients (fp16)	
-		an and the second second second	
	3 GB	Parameters (fp16)	

GPT-2 training Memory footprint Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but

		Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
3 GB	Fragmentation Overhead (Variable)	can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
_	-	during training includes optimizer states, gradients, parameters, activations, temporary
6 GB	Temporary Buffers (fp32)	buffers, and fragmented memory.
		Temporary Buffers:
		 Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a single buffer.
8 GB	Activations (with checkpointing)	• For large models, temporary buffers can consume substantial memory (e.g., 6GB
		for 1.5B parameter model with fp32 buffer).
		Memory Fragmentation:
6 GB	Optimizer States (fp32 Variance)	• Memory fragmentation can cause out-of-memory issues despite available memory,
		as contiguous blocks are required.
6 GB	Optimizer States (fp32 Momentum)	
6 GB	Optimizer States (fp32 Parameters)	
3 GB	Gradients (fp16)	
	-	
3 GB	Parameters (fp16)	

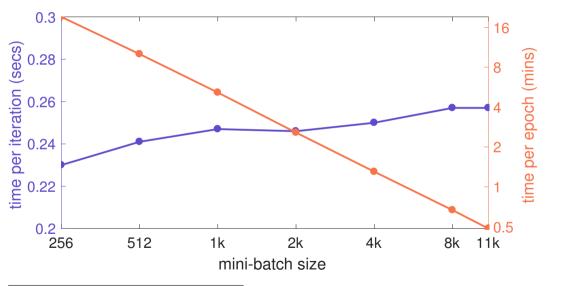
 $\rightarrow \min_{x,y,z}$

GPT-2 training Memory footprint



 $\rightarrow \min$

Large batch training ¹



 $^{^1\}mbox{Accurate},$ Large Minibatch SGD: Training ImageNet in 1 Hour

²Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Large batch training ³

	Effective	e batch size (kn)	α	top-1 error (%)	yranni Lr
C.m1		256	0.05	23.92 ± 0.10	
Smol	/	256	0.10	23.60 ± 0.12	•
batch		256	0.20	23.68 ± 0.09	
batter		8k	$0.05 \cdot 32$	24.27 ± 0.08	
		8k	$0.10 \cdot 32$	23.74 ± 0.09	$\alpha \alpha \beta \alpha \beta$
ALARGE	1	8k	$0.20 \cdot 32$	24.05 ± 0.18	$S_{0} = 1 - 1$
22		8k	0.10	41.67 ± 0.10	20 10 2
X32 LARGE BATCH		8k	$0.10 \cdot \sqrt{32}$	26.22 ± 0.03	00 10 1
					GD 18-1

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of $\alpha = 0.1$ works best for kn = 256 (23.68% error). The linear scaling rule suggests $\alpha = 0.1 \cdot 32$ when kn = 8k, which again gives best performance (23.74% error). Other ways of scaling α give worse results.

³Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability. The **linear scaling rule**⁴ suggests multiplying the learning rate by the same factor as the increase in batch size:

 $\alpha_{\mathsf{new}} = \alpha_{\mathsf{base}} \cdot \frac{\mathsf{Batch Size}_{\mathsf{new}}}{\mathsf{Batch Size}_{\mathsf{base}}}$

The square root scaling rule⁵ proposes scaling the learning rate with the square root of the batch size increase:

$$\alpha_{\rm new} = \alpha_{\rm base} \cdot \sqrt{\frac{{\sf Batch \ Size_{\rm new}}}{{\sf Batch \ Size_{\rm base}}}}$$

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves well for SGD.

NPO PEB

do

⁴Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

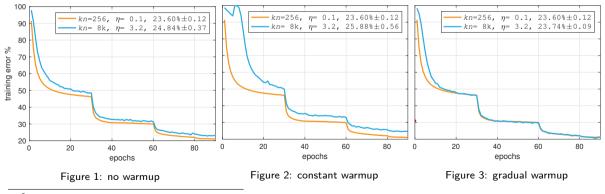
⁵Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

Gradual warmup ⁶

Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning rate from a small value to the target value over a few epochs. This is defined as:

$$\alpha_t = \alpha_{\max} \cdot \frac{t}{T_w}$$

where t is the current iteration and T_w is the warmup duration in iterations. In the original paper, authors used first 5 epochs for gradual warmup.



 $^{^{\}rm 6}\textsc{Accurate}$, Large Minibatch SGD: Training ImageNet in 1 Hour

 $\rightarrow \min_{x,y,z}$ Large batch training

Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by accumulating gradients over several mini-batches:

```
Without gradient accumulation
```

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
```

```
optimizer.step()
optimizer.zero_grad()
```


Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by accumulating gradients over several mini-batches:

Without gradient accumulation

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
```

```
optimizer.step()
optimizer.zero_grad()
```

With gradient accumulation

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    if (i+1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()
```

1. Parameter server sends the full copy of the model to each device

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes

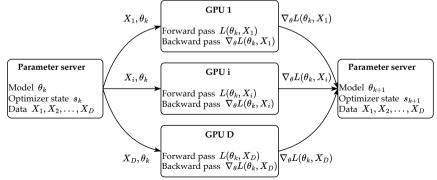
- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs, each with a copy of the model. Gradients are averaged and weights updated synchronously:



Distributed Data Parallel training

Distributed Data Parallel (DDP) ⁷ extends data parallelism across multiple nodes. Each node computes gradients locally, then synchronizes with others. Below one can find differences from the PyTorch site. This is used by default in **#**Accelerate library.

 DataParallel
 DistributedDataParallel

 More overhead; model is replicated and destroyed at each forward pass
 Model is replicated only once

 Only supports single-node parallelism
 Supports scaling to multiple machines

 Slower; uses multithreading on a single process and runs into Global Interpreter Lock (GIL) contention
 Faster (no GIL contention) because it uses

⁷Getting Started with Distributed Data Parallel

Naive model parallelism

Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing memory load per GPU. Allows to work with the models, that won't fit in the single GPU Poor resource utilization.

	Mo	del	
Layer A	Layer B	Layer C	Layer D
θ_A	θ_B	θ_{C}	θ_D

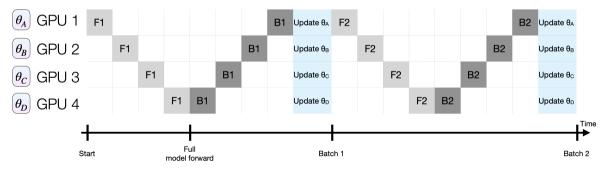
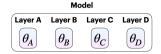


Figure 5: Model parallelism

Pipeline model parallelism (GPipe)⁸

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline, allowing for overlapping computation and communication:



θ _A GPU 1	F1,1	F1,2	F1,3	F1,4	F1,5	F1,6							B1,6	B1,5	B1,4	B1,3	B1,2	B1,1	Update θ_A
θ_B GPU 2		F1,1	F1,2	F1,3	F1,4	F1,5	F1,6					B1,6	B1,5	B1,4	B1,3	B1,2	B1,1		Update θ_B
θ_{C} GPU 3			F1,1	F1,2	F1,3	F1,4	F1,5	F1,6			B1,6	B1,5	B1,4	B1,3	B1,2	B1,1			Update $\theta_{\rm C}$
(Hand Beneficial Beneficia Beneficial Benefi				F1,1	F1,2	F1,3	F1,4	F1,5	F1,6	B1,6	B1,5	B1,4	B1,3	B1,2	B1,1				Update θ_D
_																			Tir
St	art									ull forward									Batch

⁸GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

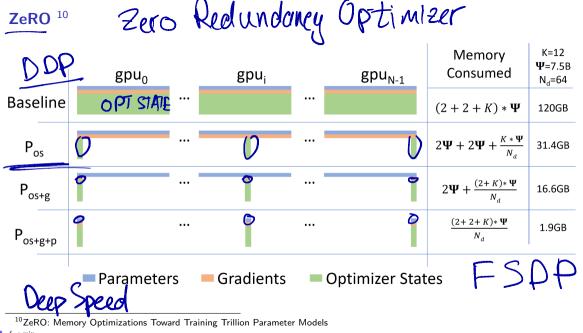
Pipeline model parallelism (PipeDream) ⁹

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages to maximize utilization and reduce idle time:

	Mo	del	
Layer A	Layer B	Layer C	Layer D
θ_A	θ_B	θ_{C}	θ_D

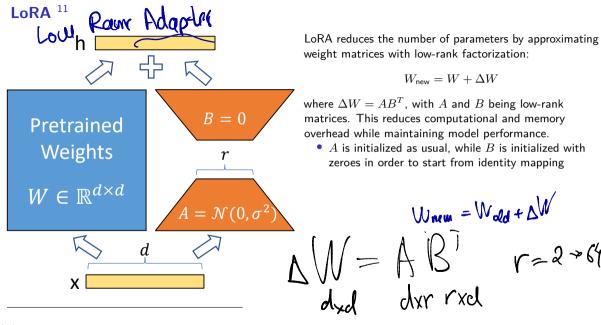
(Hackborn GPU 1	F1,1	F1,2	F1,3	F1,4				B1,1	F1,5	B1,2	F1,6	B1,3		B1,4		B1,5		B1,6	Update θ_A
θ_B GPU 2		F1,1	F1,2	F1,3	F1,4		B1,1		B1,2	F1,5	B1,3	F1,6	B1,4		B1,5		B1,6		Update θ_B
θ_{C} GPU 3			F1,1	F1,2	F1,3	B1,1	F1,4	B1,2		B1,3	F1,5	B1,4	F1,6	B1,5		B1,6			Update θ_{C}
θ_D GPU 4				F1,1	B1,1	F1,2	B1,2	F1,3	B1,3	F1,4	B1,4	F1,5	B1,5	F1,6	B1,6				Update θ_D
-	_																		Ī
s	tart														∎ ull forward				Batcl

⁹PipeDream: Generalized Pipeline Parallelism for DNN Training

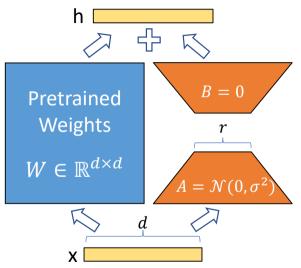


 $\rightarrow \min_{x,y,z}$ MultiGPU training

♥ O Ø 14



V=2->64

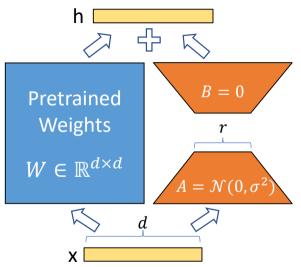


LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\rm new} = W + \Delta W$

where $\Delta W = AB^T$, with A and B being low-rank matrices. This reduces computational and memory overhead while maintaining model performance.

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- r is typically selected between 2 and 64

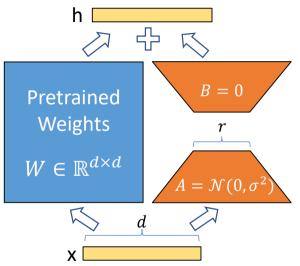


LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\rm new} = W + \Delta W$

where $\Delta W = AB^T$, with A and B being low-rank matrices. This reduces computational and memory overhead while maintaining model performance.

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- r is typically selected between 2 and 64
- Usually applied to attention modules



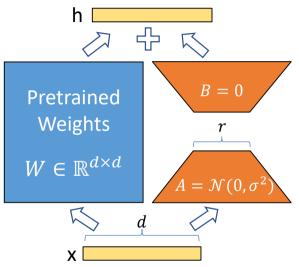
LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\rm new} = W + \Delta W$

where $\Delta W = AB^T$, with A and B being low-rank matrices. This reduces computational and memory overhead while maintaining model performance.

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- r is typically selected between 2 and 64
- Usually applied to attention modules

¹¹LoRA: Low-Rank Adaptation of Large Language Models $f \rightarrow \min$



LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\rm new} = W + \Delta W$

where $\Delta W = AB^T$, with A and B being low-rank matrices. This reduces computational and memory overhead while maintaining model performance.

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- r is typically selected between 2 and 64
- Usually applied to attention modules

$$h = W_{\mathsf{new}}x = Wx + \Delta Wx = Wx + AB^T x$$

¹¹LoRA: Low-Rank Adaptation of Large Language Models

Feedforward Architecture

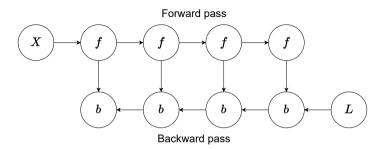


Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

Feedforward Architecture

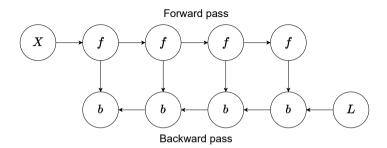


Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

Important The results obtained for the f nodes are needed to compute the b nodes.

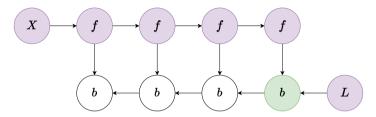


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

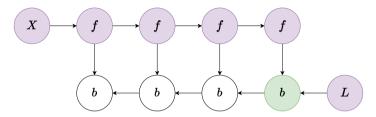


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

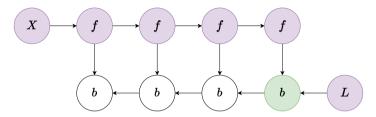


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

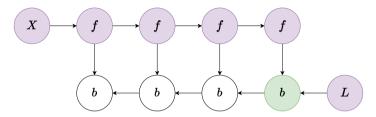


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- All activations f are kept in memory after the forward pass.
 - Optimal in terms of computation: it only computes each node once.

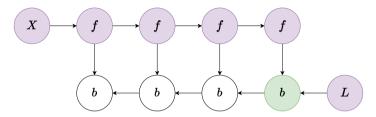


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- All activations f are kept in memory after the forward pass.
 - Optimal in terms of computation: it only computes each node once.

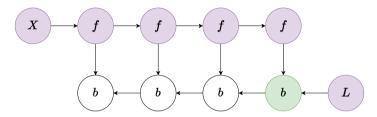


Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- All activations *f* are kept in memory after the forward pass.
 - Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

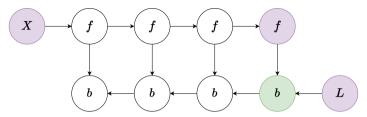


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

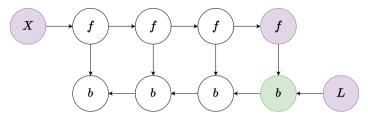


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Each activation *f* is recalculated as needed.

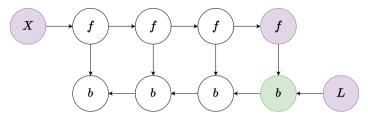


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Each activation *f* is recalculated as needed.

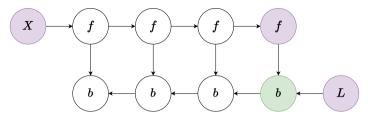


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- Each activation *f* is recalculated as needed.
 - Optimal in terms of memory: there is no need to store all activations in memory.

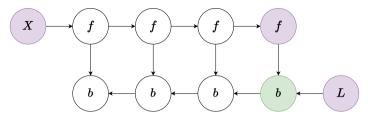


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- Each activation *f* is recalculated as needed.
 - Optimal in terms of memory: there is no need to store all activations in memory.

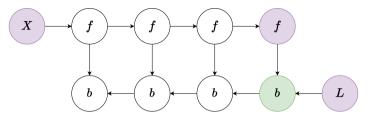


Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- Each activation *f* is recalculated as needed.
 - Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n^2 , whereas it vanilla backprop scaled as n: each of the n nodes is recomputed on the order of n times.

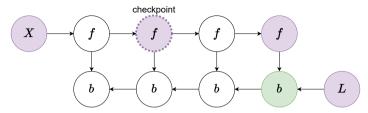


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

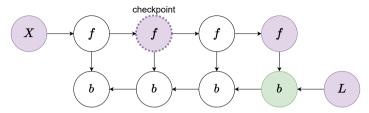


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

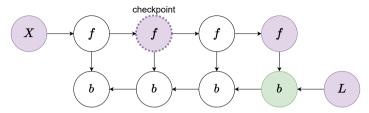


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

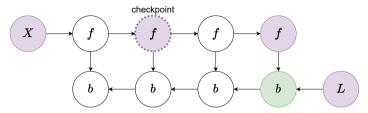


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last checkpoint preceding it when computing that b node during backprop.

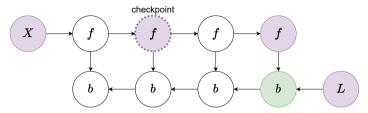


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last checkpoint preceding it when computing that b node during backprop.

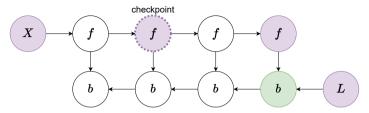


Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.
 - Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last checkpoint preceding it when computing that b node during backprop.
 - Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing visualization

The animated visualization of the above approaches $oldsymbol{O}$

An example of using a gradient checkpointing ${\boldsymbol{ \bigcirc}}$

Split the weight matrix into 2 well clustered factors 12 $\ensuremath{\mathsf{KBAHT}}\ensuremath{\mathsf{N3N}}\ensuremath{\mathsf{KN3}}\ensuremath{\mathsf{N3N}}\ensuremath{\mathsf{KN3}}\ensuremath{\mathsf{N3N}}\ens$

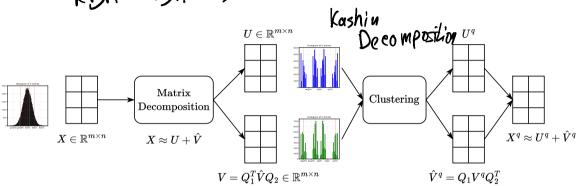


Figure 10: Scheme of post-training quantization approach.

¹²Quantization of Large Language Models with an Overdetermined Basis

 $f \rightarrow \min_{x,y,z}$ Quantization