
Automatic di�erentiation.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

� � � 1

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Figure 1: When you got the idea

Daniil Merkulov



Figure 2: This is not autograd

Daniil Merkulov



Problem

Suppose we need to solve the following problem:

L(w) æ min
wœRd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ÒwL =
1

ˆL
ˆw1

, . . . , ˆL
ˆwd

2T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic di�erentiation � � � 4

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Problem

Suppose we need to solve the following problem:

L(w) æ min
wœRd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ÒwL =
1

ˆL
ˆw1

, . . . , ˆL
ˆwd

2T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic di�erentiation � � � 4

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Problem

Suppose we need to solve the following problem:

L(w) æ min
wœRd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ÒwL =
1

ˆL
ˆw1

, . . . , ˆL
ˆwd

2T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic di�erentiation � � � 4

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Problem

Suppose we need to solve the following problem:

L(w) æ min
wœRd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ÒwL =
1

ˆL
ˆw1

, . . . , ˆL
ˆwd

2T

.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic di�erentiation � � � 4

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Problem

Suppose we need to solve the following problem:

L(w) æ min
wœRd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ÒwL =
1

ˆL
ˆw1

, . . . , ˆL
ˆwd

2T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic di�erentiation � � � 4

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D œ RN◊N . Given this matrix, our goal is
to recover the initial coordinates Wi œ Rd, i = 1, . . . , N .

L(W ) =
Nÿ

i,j=1

!
ÎWi ≠ WjÎ

2
2 ≠ Di,j

"2
æ min

W œRN◊d

Link to a nice visualization ˙, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic di�erentiation � � � 5

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D œ RN◊N . Given this matrix, our goal is
to recover the initial coordinates Wi œ Rd, i = 1, . . . , N .

L(W ) =
Nÿ

i,j=1

!
ÎWi ≠ WjÎ

2
2 ≠ Di,j

"2
æ min

W œRN◊d

Link to a nice visualization ˙, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic di�erentiation � � � 5

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D œ RN◊N . Given this matrix, our goal is
to recover the initial coordinates Wi œ Rd, i = 1, . . . , N .

L(W ) =
Nÿ

i,j=1

!
ÎWi ≠ WjÎ

2
2 ≠ Di,j

"2
æ min

W œRN◊d

Link to a nice visualization ˙, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic di�erentiation � � � 5

Daniil Merkulov

Daniil Merkulov

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)
Is it possible to replace ÒwL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)

Is it possible to replace ÒwL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)
Is it possible to replace ÒwL(wk) using only zero-order
information?

Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)
Is it possible to replace ÒwL(wk) using only zero-order
information?
Yes, but at a cost.

One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods Figure 3: “Illustration of two-point estimator of Gradient

Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)
Is it possible to replace ÒwL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) æ min
wœRd

with the Gradient Descent (GD) algorithm:

wk+1 = wk ≠ –kÒwL(wk)
Is it possible to replace ÒwL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + Áv) ≠ L(w ≠ Áv)

2Á
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods Figure 3: “Illustration of two-point estimator of Gradient

Descent”

Automatic di�erentiation � � � 6

Daniil Merkulov

Daniil Merkulov

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient

wk+1 = wk ≠ –kG

One can also consider the idea of finite di�erences:

G =
dÿ

i=1

L(w + Áei) ≠ L(w ≠ Áei)
2Á

ei

Open In Colab ˙

Figure 4: “Illustration of finite di�erences estimator of Gradient
Descent”

Automatic di�erentiation � � � 7

Daniil Merkulov

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Example: Gradient Descent without gradient

wk+1 = wk ≠ –kG

One can also consider the idea of finite di�erences:

G =
dÿ

i=1

L(w + Áei) ≠ L(w ≠ Áei)
2Á

ei

Open In Colab ˙

Figure 4: “Illustration of finite di�erences estimator of Gradient
Descent”

Automatic di�erentiation � � � 7

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


The curse of dimensionality for zero-order methods

min
xœRn

f(x)

GD: xk+1 = xk ≠ –kÒf(xk) Zero order GD: xk+1 = xk ≠ –kG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth
f(x) - smooth and

convex f(x) - smooth and strongly convex

GD ÎÒf(xk)Î2
¥ O

1 1
k

2
f(xk) ≠ fú

¥ O

1 1
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
L

2k
4

Zero order GD ÎÒf(xk)Î2
¥ O

1
n
k

2
f(xk) ≠ fú

¥ O

1
n
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
nL

2k
4

Automatic di�erentiation � � � 8

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


The curse of dimensionality for zero-order methods

min
xœRn

f(x)

GD: xk+1 = xk ≠ –kÒf(xk) Zero order GD: xk+1 = xk ≠ –kG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth
f(x) - smooth and

convex f(x) - smooth and strongly convex

GD ÎÒf(xk)Î2
¥ O

1 1
k

2
f(xk) ≠ fú

¥ O

1 1
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
L

2k
4

Zero order GD ÎÒf(xk)Î2
¥ O

1
n
k

2
f(xk) ≠ fú

¥ O

1
n
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
nL

2k
4

Automatic di�erentiation � � � 8

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


The curse of dimensionality for zero-order methods

min
xœRn

f(x)

GD: xk+1 = xk ≠ –kÒf(xk) Zero order GD: xk+1 = xk ≠ –kG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth
f(x) - smooth and

convex f(x) - smooth and strongly convex

GD ÎÒf(xk)Î2
¥ O

1 1
k

2
f(xk) ≠ fú

¥ O

1 1
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
L

2k
4

Zero order GD ÎÒf(xk)Î2
¥ O

1
n
k

2
f(xk) ≠ fú

¥ O

1
n
k

2
Îxk ≠ xú

Î
2

¥ O

31
1 ≠

µ
nL

2k
4

Automatic di�erentiation � � � 8

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Finite di�erences

The naive approach to get approximate values of gradients is Finite di�erences approach. For each coordinate, one
can calculate the partial derivative approximation:

ˆL
ˆwk

(w) ¥
L(w + Áek) ≠ L(w)

Á
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ÒwL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ÒwL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic di�erentiation � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Finite di�erences

The naive approach to get approximate values of gradients is Finite di�erences approach. For each coordinate, one
can calculate the partial derivative approximation:

ˆL
ˆwk

(w) ¥
L(w + Áek) ≠ L(w)

Á
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ÒwL with this
approach?

Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ÒwL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic di�erentiation � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Finite di�erences

The naive approach to get approximate values of gradients is Finite di�erences approach. For each coordinate, one
can calculate the partial derivative approximation:

ˆL
ˆwk

(w) ¥
L(w + Áek) ≠ L(w)

Á
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ÒwL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem
There is an algorithm to compute ÒwL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic di�erentiation � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Finite di�erences

The naive approach to get approximate values of gradients is Finite di�erences approach. For each coordinate, one
can calculate the partial derivative approximation:

ˆL
ˆwk

(w) ¥
L(w + Áek) ≠ L(w)

Á
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ÒwL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ÒwL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic di�erentiation � � � 9

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation
To dive deep into the idea of automatic di�erentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +


w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ˆL
ˆw1

.

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation
To dive deep into the idea of automatic di�erentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +


w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ˆL
ˆw1

.

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation
To dive deep into the idea of automatic di�erentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +


w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ˆL
ˆw1

.

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 6: Illustration of forward mode automatic di�erentiation

Function
w1 = w1, w2 = w2

Derivative
ˆw1
ˆw1

= 1,
ˆw2
ˆw1

= 0

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 6: Illustration of forward mode automatic di�erentiation

Function
w1 = w1, w2 = w2

Derivative
ˆw1
ˆw1

= 1,
ˆw2
ˆw1

= 0

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 7: Illustration of forward mode automatic di�erentiation

Function
v1 = log w1

Derivative
ˆv1
ˆw1

= ˆv1
ˆw1

ˆw1
ˆw1

= 1
w1

1

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 7: Illustration of forward mode automatic di�erentiation

Function
v1 = log w1

Derivative
ˆv1
ˆw1

= ˆv1
ˆw1

ˆw1
ˆw1

= 1
w1

1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 7: Illustration of forward mode automatic di�erentiation

Function
v1 = log w1

Derivative
ˆv1
ˆw1

= ˆv1
ˆw1

ˆw1
ˆw1

= 1
w1

1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 8: Illustration of forward mode automatic di�erentiation

Function
v2 = w2v1

Derivative
ˆv2
ˆw1

= ˆv2
ˆv1

ˆv1
ˆw1

+ ˆv2
ˆw2

ˆw2
ˆw1

= w2
ˆv1
ˆw1

+ v1
ˆw2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 8: Illustration of forward mode automatic di�erentiation

Function
v2 = w2v1

Derivative
ˆv2
ˆw1

= ˆv2
ˆv1

ˆv1
ˆw1

+ ˆv2
ˆw2

ˆw2
ˆw1

= w2
ˆv1
ˆw1

+ v1
ˆw2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 8: Illustration of forward mode automatic di�erentiation

Function
v2 = w2v1

Derivative
ˆv2
ˆw1

= ˆv2
ˆv1

ˆv1
ˆw1

+ ˆv2
ˆw2

ˆw2
ˆw1

= w2
ˆv1
ˆw1

+ v1
ˆw2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 9: Illustration of forward mode automatic di�erentiation

Function
v3 = Ô

v2

Derivative
ˆv3
ˆw1

= ˆv3
ˆv2

ˆv2
ˆw1

= 1
2Ô

v2
ˆv2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 9: Illustration of forward mode automatic di�erentiation

Function
v3 = Ô

v2

Derivative
ˆv3
ˆw1

= ˆv3
ˆv2

ˆv2
ˆw1

= 1
2Ô

v2
ˆv2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 9: Illustration of forward mode automatic di�erentiation

Function
v3 = Ô

v2

Derivative
ˆv3
ˆw1

= ˆv3
ˆv2

ˆv2
ˆw1

= 1
2Ô

v2
ˆv2
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 10: Illustration of forward mode automatic di�erentiation

Function
L = v2 + v3

Derivative
ˆL

ˆw1
= ˆL

ˆv2
ˆv2
ˆw1

+ ˆL
ˆv3

ˆv3
ˆw1

= 1 ˆv2
ˆw1

+ 1 ˆv3
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 10: Illustration of forward mode automatic di�erentiation

Function
L = v2 + v3

Derivative
ˆL

ˆw1
= ˆL

ˆv2
ˆv2
ˆw1

+ ˆL
ˆv3

ˆv3
ˆw1

= 1 ˆv2
ˆw1

+ 1 ˆv3
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation

Figure 10: Illustration of forward mode automatic di�erentiation

Function
L = v2 + v3

Derivative
ˆL

ˆw1
= ˆL

ˆv2
ˆv2
ˆw1

+ ˆL
ˆv3

ˆv3
ˆw1

= 1 ˆv2
ˆw1

+ 1 ˆv3
ˆw1

Automatic di�erentiation � � � 10

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Make the similar computations for ˆL

ˆw2

Figure 11: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Automatic di�erentiation � � � 11

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation example

Figure 12: Illustration of forward mode automatic di�erentiation

Function
w1 = w1, w2 = w2

Derivative
ˆw1
ˆw2

= 0,
ˆw2
ˆw2

= 1

Automatic di�erentiation � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation example

Figure 13: Illustration of forward mode automatic di�erentiation

Function
v1 = log w1

Derivative
ˆv1
ˆw2

= ˆv1
ˆw2

ˆw2
ˆw2

= 0 · 1

Automatic di�erentiation � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation example

Figure 14: Illustration of forward mode automatic di�erentiation

Function
v2 = w2v1

Derivative
ˆv2
ˆw2

= ˆv2
ˆv1

ˆv1
ˆw2

+ ˆv2
ˆw2

ˆw2
ˆw2

= w2
ˆv1
ˆw2

+ v1
ˆw2
ˆw2

Automatic di�erentiation � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation example

Figure 15: Illustration of forward mode automatic di�erentiation

Function
v3 = Ô

v2

Derivative
ˆv3
ˆw2

= ˆv3
ˆv2

ˆv2
ˆw2

= 1
2Ô

v2
ˆv2
ˆw2

Automatic di�erentiation � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation example

Figure 16: Illustration of forward mode automatic di�erentiation

Function
L = v2 + v3

Derivative
ˆL

ˆw2
= ˆL

ˆv2
ˆv2
ˆw2

+ ˆL
ˆv3

ˆv3
ˆw2

= 1 ˆv2
ˆw2

+ 1 ˆv3
ˆw2

Automatic di�erentiation � � � 11

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :
vi = vi(x1, . . . , xti )

• Compute the derivative vi using the forward chain
rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :
vi = vi(x1, . . . , xti )

• Compute the derivative vi using the forward chain
rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :
vi = vi(x1, . . . , xti )

• Compute the derivative vi using the forward chain
rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Forward mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ˆvN

ˆwk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ˆvi

ˆwk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :
vi = vi(x1, . . . , xti )

• Compute the derivative vi using the forward chain
rule:

vi =
tiÿ

j=1

ˆvi

ˆxj

ˆxj

ˆwk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ˆL

ˆwk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite di�erences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic di�erentiation � � � 12

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Daniil Merkulov



Backward mode automatic di�erentiation
We will consider the same function with a computational graph:

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
ˆL
ˆw1

,
ˆL
ˆw2

:

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation
We will consider the same function with a computational graph:

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
ˆL
ˆw1

,
ˆL
ˆw2

:

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 19: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆL

= 1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 19: Illustration of backward mode automatic di�erentiation

Derivatives

ˆL
ˆL

= 1

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 19: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆL

= 1

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 20: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv3

= ˆL
ˆL

ˆL
ˆv3

= ˆL
ˆL

1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 20: Illustration of backward mode automatic di�erentiation

Derivatives

ˆL
ˆv3

= ˆL
ˆL

ˆL
ˆv3

= ˆL
ˆL

1

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 20: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv3

= ˆL
ˆL

ˆL
ˆv3

= ˆL
ˆL

1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 21: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv2

= ˆL
ˆv3

ˆv3
ˆv2

+ ˆL
ˆL

ˆL
ˆv2

= ˆL
ˆv3

1
2Ô

v2
+ ˆL

ˆL
1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 21: Illustration of backward mode automatic di�erentiation

Derivatives

ˆL
ˆv2

= ˆL
ˆv3

ˆv3
ˆv2

+ ˆL
ˆL

ˆL
ˆv2

= ˆL
ˆv3

1
2Ô

v2
+ ˆL

ˆL
1

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 21: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv2

= ˆL
ˆv3

ˆv3
ˆv2

+ ˆL
ˆL

ˆL
ˆv2

= ˆL
ˆv3

1
2Ô

v2
+ ˆL

ˆL
1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 22: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv1

= ˆL
ˆv2

ˆv2
ˆv1

= ˆL
ˆv2

w2

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 22: Illustration of backward mode automatic di�erentiation

Derivatives

ˆL
ˆv1

= ˆL
ˆv2

ˆv2
ˆv1

= ˆL
ˆv2

w2

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 22: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆv1

= ˆL
ˆv2

ˆv2
ˆv1

= ˆL
ˆv2

w2

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 23: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆw1

= ˆL
ˆv1

ˆv1
ˆw1

= ˆL
ˆv1

1
w1

ˆL
ˆw2

= ˆL
ˆv2

ˆv2
ˆw2

= ˆL
ˆv1

v1

Automatic di�erentiation � � � 14

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 23: Illustration of backward mode automatic di�erentiation

Derivatives

ˆL
ˆw1

= ˆL
ˆv1

ˆv1
ˆw1

= ˆL
ˆv1

1
w1

ˆL
ˆw2

= ˆL
ˆv2

ˆv2
ˆw2

= ˆL
ˆv1

v1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward mode automatic di�erentiation example

Figure 23: Illustration of backward mode automatic di�erentiation

Derivatives
ˆL
ˆw1

= ˆL
ˆv1

ˆv1
ˆw1

= ˆL
ˆv1

1
w1

ˆL
ˆw2

= ˆL
ˆv2

ˆv2
ˆw2

= ˆL
ˆv1

v1

Automatic di�erentiation � � � 14

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward (reverse) mode automatic di�erentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
ÒwL. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic di�erentiation � � � 15

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Backward (reverse) mode automatic di�erentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
ÒwL. Is it a free lunch? What is the cost of acceleration?
Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic di�erentiation � � � 15

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Reverse mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,
i.e. ÒwvN =

1
ˆvN
ˆw1

, . . . , ˆvN
ˆwd

2T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ˆL
ˆvi

= ˆvN

ˆvi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi = ˆL

ˆvi
=

tiÿ

j=1

ˆL

ˆxj

ˆxj

ˆvi

Automatic di�erentiation � � � 16

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Reverse mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,
i.e. ÒwvN =

1
ˆvN
ˆw1

, . . . , ˆvN
ˆwd

2T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ˆL
ˆvi

= ˆvN

ˆvi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi = ˆL

ˆvi
=

tiÿ

j=1

ˆL

ˆxj

ˆxj

ˆvi

Automatic di�erentiation � � � 16

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Reverse mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,
i.e. ÒwvN =

1
ˆvN
ˆw1

, . . . , ˆvN
ˆwd

2T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ˆL
ˆvi

= ˆvN

ˆvi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi = ˆL

ˆvi
=

tiÿ

j=1

ˆL

ˆxj

ˆxj

ˆvi

Automatic di�erentiation � � � 16

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Reverse mode automatic di�erentiation algorithm
Suppose, we have a computational graph vi, i œ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,
i.e. ÒwvN =

1
ˆvN
ˆw1

, . . . , ˆvN
ˆwd

2T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ˆL
ˆvi

= ˆvN

ˆvi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi = ˆL

ˆvi
=

tiÿ

j=1

ˆL

ˆxj

ˆxj

ˆvi

Automatic di�erentiation � � � 16

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Figure 25: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
;

ˆLi

ˆwj

<

i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic di�erentiation � � � 17

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Figure 25: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
;

ˆLi

ˆwj

<

i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic di�erentiation � � � 17

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Figure 26: ˙ This graph nicely illustrates the idea of choice between the modes. The n = 100 dimension is fixed and the
graph presents the time needed for Jacobian calculation w.r.t. x for f(x) = Ax

Automatic di�erentiation � � � 18

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Figure 27: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
;

ˆLi

ˆwj

<

i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic di�erentiation � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Choose your fighter

Figure 27: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
;

ˆLi

ˆwj

<

i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic di�erentiation � � � 19

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:

• vk = ‡(vk≠1wk). Note, that practically
speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:

• vk = ‡(vk≠1wk). Note, that practically
speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1

• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t ≠ 1, t:
• vk = ‡(vk≠1wk). Note, that practically

speaking the data has dimension
x œ Rb◊d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk≠1 ◊ nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
ˆL
ˆL

= 1
• For k = t, t ≠ 1, . . . , 1:

• ˆL

ˆvk
b◊nk

= ˆL

ˆvk+1
b◊nk+1

ˆvk+1
ˆvk

nk+1◊nk

• ˆL

ˆwk
b◊nk≠1·nk

= ˆL

ˆvk+1
b◊nk+1

·
ˆvk+1
ˆwk

nk+1◊nk≠1·nk

Figure 28: Feedforward neural network architecture

Automatic di�erentiation � � � 20

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A≠1b, in this example we will show,
that computing all derivatives ˆL

ˆA
,

ˆL
ˆb

,
ˆL
ˆx

, i.e. the backward pass,
costs approximately the same as the forward pass.

It is known, that the di�erential of the function does not depend on
the parametrization:

dL =
e

ˆL
ˆx

, dx
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Given the linear system, we have:

Ax = b

dAx + Adx = db æ dx = A≠1(db ≠ dAx)

Automatic di�erentiation � � � 21

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A≠1b, in this example we will show,
that computing all derivatives ˆL

ˆA
,

ˆL
ˆb

,
ˆL
ˆx

, i.e. the backward pass,
costs approximately the same as the forward pass.
It is known, that the di�erential of the function does not depend on
the parametrization:

dL =
e

ˆL
ˆx

, dx
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Given the linear system, we have:

Ax = b

dAx + Adx = db æ dx = A≠1(db ≠ dAx)

Automatic di�erentiation � � � 21

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A≠1b, in this example we will show,
that computing all derivatives ˆL

ˆA
,

ˆL
ˆb

,
ˆL
ˆx

, i.e. the backward pass,
costs approximately the same as the forward pass.
It is known, that the di�erential of the function does not depend on
the parametrization:

dL =
e

ˆL
ˆx

, dx
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Given the linear system, we have:

Ax = b

dAx + Adx = db æ dx = A≠1(db ≠ dAx)

Automatic di�erentiation � � � 21

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:
e

ˆL
ˆx

, A≠1(db ≠ dAx)
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

e
≠A≠T ˆL

ˆx
xT , dA

f
+

e
A≠T ˆL

ˆx
, db

f
=

e
ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Therefore:

ˆL
ˆA

= ≠A≠T ˆL
ˆx

xT ˆL
ˆb

= A≠T ˆL
ˆx

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic di�erentiation � � � 22

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:
e

ˆL
ˆx

, A≠1(db ≠ dAx)
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

e
≠A≠T ˆL

ˆx
xT , dA

f
+

e
A≠T ˆL

ˆx
, db

f
=

e
ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Therefore:

ˆL
ˆA

= ≠A≠T ˆL
ˆx

xT ˆL
ˆb

= A≠T ˆL
ˆx

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic di�erentiation � � � 22

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:
e

ˆL
ˆx

, A≠1(db ≠ dAx)
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

e
≠A≠T ˆL

ˆx
xT , dA

f
+

e
A≠T ˆL

ˆx
, db

f
=

e
ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Therefore:

ˆL
ˆA

= ≠A≠T ˆL
ˆx

xT ˆL
ˆb

= A≠T ˆL
ˆx

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic di�erentiation � � � 22

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:
e

ˆL
ˆx

, A≠1(db ≠ dAx)
f

=
e

ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

e
≠A≠T ˆL

ˆx
xT , dA

f
+

e
A≠T ˆL

ˆx
, db

f
=

e
ˆL
ˆA

, dA
f

+
e

ˆL
ˆb

, db
f

Therefore:

ˆL
ˆA

= ≠A≠T ˆL
ˆx

xT ˆL
ˆb

= A≠T ˆL
ˆx

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic di�erentiation � � � 22

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

Suppose, we have the rectangular matrix W œ Rm◊n, which has a singular value
decomposition:

W = U�V T , UT U = I, V T V = I, � = diag(‡1, . . . , ‡min(m,n))

1. Similarly to the previous example:

W = U�V T

dW = dU�V T + Ud�V T + U�dV T

UT dW V = UT dU�V T V + UT Ud�V T V + UT U�dV T V

UT dW V = UT dU� + d� + �dV T V

Automatic di�erentiation � � � 23

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

2. Note, that UT U = I æ dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 æ diag(UT dU) = (0, . . . , 0)
The same logic could be applied to the matrix V and

diag(dV T V ) = (0, . . . , 0)

3. At the same time, the matrix d� is diagonal, which means (look at the 1.)
that

diag(UT dW V ) = d�
Here on both sides, we have diagonal matrices.

Automatic di�erentiation � � � 24

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

2. Note, that UT U = I æ dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 æ diag(UT dU) = (0, . . . , 0)
The same logic could be applied to the matrix V and

diag(dV T V ) = (0, . . . , 0)
3. At the same time, the matrix d� is diagonal, which means (look at the 1.)

that

diag(UT dW V ) = d�
Here on both sides, we have diagonal matrices.

Automatic di�erentiation � � � 24

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

4. Now, we can decompose the di�erential of the loss function as a function of
� - such problems arise in ML problems, where we need to restrict the
matrix rank:

dL =
e

ˆL
ˆ� , d�

f

=
e

ˆL
ˆ� , diag(UT dW V )

f

= tr
3

ˆL
ˆ�

T

diag(UT dW V )
4

Automatic di�erentiation � � � 25

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the
diagonal part of the matrix will be equal to the trace of the whole matrix:

dL = tr
3

ˆL
ˆ�

T

diag(UT dW V )
4

= tr
3

ˆL
ˆ�

T

UT dW V

4

=
e

ˆL
ˆ� , UT dW V

f

=
e

U
ˆL
ˆ�V T , dW

f

Automatic di�erentiation � � � 26

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Gradient propagation through the SVD

6. Finally, using another parametrization of the di�erential
e

U
ˆL
ˆ�V T , dW

f
=

e
ˆL
ˆW

, dW
f

ˆL
ˆW

= U
ˆL
ˆ�V T ,

This nice result allows us to connect the gradients ˆL
ˆW

and ˆL
ˆ� .

Automatic di�erentiation � � � 27

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : Rn

æ R, the
Hessian at a point x œ Rn is written as Ò

2f(x). A Hessian-vector product function is then able to evaluate

v ‘æ Ò
2f(x) · v

for any vector v œ Rn. We have to use the identity

Ò
2f(x)v = Ò[x ‘æ Òf(x) · v] = Òg(x),

where g(x) = Òf(x)T
· v is a new vector-valued function that dots the gradient of f at x with the vector v.

import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic di�erentiation � � � 28

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Hutchinson Trace Estimation [1]
This example illustrates the estimation the Hessian trace of a neural network using Hutchinson’s method, which is an
algorithm to obtain such an estimate from matrix-vector products:

Let X œ Rd◊d and v œ Rd be a random vector such that E[vvT ] = I. Then,

Tr(X) = E[vT Xv] = 1
V

Vÿ

i=1

vT
i Xvi.

Figure 31: Source
Automatic di�erentiation � � � 29

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

Daniil Merkulov

https://docs.backpack.pt/en/master/use_cases/example_trace_estimation.html
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Activation checkpointing

The animated visualization of the above approaches �

An example of using a gradient checkpointing �

Automatic di�erentiation � � � 30

Daniil Merkulov

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences

• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-e�cient and

numerically stable
• AD (reverse mode) is memory ine�cient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences
• AD is not a symbolic derivative

• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-e�cient and

numerically stable
• AD (reverse mode) is memory ine�cient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences
• AD is not a symbolic derivative
• AD is not just the chain rule

• AD is not just backpropagation
• AD (reverse mode) is time-e�cient and

numerically stable
• AD (reverse mode) is memory ine�cient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation

• AD (reverse mode) is time-e�cient and
numerically stable

• AD (reverse mode) is memory ine�cient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-e�cient and

numerically stable

• AD (reverse mode) is memory ine�cient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What automatic di�erentiation (AD) is NOT:

• AD is not a finite di�erences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-e�cient and

numerically stable
• AD (reverse mode) is memory ine�cient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Di�erent approaches for taking derivatives

Automatic di�erentiation � � � 31

Daniil Merkulov

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Code

Open In Colab ˙

1. Hutchinson MF (1989) A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communication in Statistics- Simulation and Computation 18:1059–1076. https://doi.org/10.1080/
03610919008812866

Automatic di�erentiation � � � 32

Daniil Merkulov

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1080/03610919008812866
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Automatic differentiation

