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Basic linear algebra recap

• Naive matmul O(n3), naive matvec O(n2)

• All matrices have SVD
A = UΣV T

• tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) for any matrices ABCD if the multiplication defined.
• ⟨A, B⟩ = tr(AT B)
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Convergence rate

Figure 1: Illustration of different convergence rates

• Linear (geometricm, exponential) convergence:

rk ≤ Cqk, 0 < q < 1, C > 0

• Any convergent sequence, that is slower (faster) than any linearly convergent sequence has sublinear
(superlinear) convergence
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Root test

Let {rk}∞
k=m be a sequence of non-negative numbers, converging to zero, and let

q = lim
k→∞

sup
k

r
1/k
k

• If 0 ≤ q < 1, then {rk}∞
k=m has linear convergence with constant q.

• In particular, if q = 0, then {rk}∞
k=m has superlinear convergence.

• If q = 1, then {rk}∞
k=m has sublinear convergence.

• The case q > 1 is impossible.
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Ratio test

Let {rk}∞
k=m be a sequence of strictly positive numbers converging to zero. Let

q = lim
k→∞

rk+1

rk

• If there exists q and 0 ≤ q < 1, then {rk}∞
k=m has linear convergence with constant q.

• In particular, if q = 0, then {rk}∞
k=m has superlinear convergence.

• If q does not exist, but q = lim
k→∞

supk

rk+1

rk
< 1, then {rk}∞

k=m has linear convergence with a constant not
exceeding q.

• If lim
k→∞

infk
rk+1

rk
= 1, then {rk}∞

k=m has sublinear convergence.

• The case lim
k→∞

infk
rk+1

rk
> 1 is impossible.

• In all other cases (i.e., when lim
k→∞

infk
rk+1

rk
< 1 ≤ lim

k→∞
supk

rk+1

rk
) we cannot claim anything concrete about

the convergence rate {rk}∞
k=m.
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Line search
Typical line search problem is finding the good value α of the stepsize:

xk+1 = xk − α∇f(xk)

Figure 2: Illustration of sufficient decrease condition
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Line search methods

• Solution localization methods:

• Dichotomy search method
• Golden selection search method

• Inexact line search:

• Sufficient decrease
• Goldstein conditions
• Curvature conditions
• The idea behind backtracking line search
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Problem 1. Stupid important idea on matrix computations.

Suppose, you have the following expression

b = A1A2A3x,

where the A1, A2, A3 ∈ R3×3 - random square dense matrices and x ∈ Rn - vector. You need to compute b.

Which one way is the best to do it?

1. A1A2A3x (from left to right)

2. (A1 (A2 (A3x))) (from right to left)
3. It does not matter
4. The results of the first two options will not be the same.

Check the simple 3code snippet after all.

Problems v § } 8
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Problem 2. Connection between Frobenius norm and singular values.

Let A ∈ Rm×n, and let q := min{m, n}. Show that

∥A∥2
F =

q∑
i=1

σ2
i (A),

where σ1(A) ≥ . . . ≥ σq(A) ≥ 0 are the singular values of matrix A. Hint: use the connection between Frobenius
norm and scalar product and SVD.
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Problem 3. Known your inner product.

Simplify the following expression:

n∑
i=1

⟨S−1ai, ai⟩,

where S =
n∑

i=1
aia

T
i , ai ∈ Rn, det(S) ̸= 0
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Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:
• rk = 1

3k

• rk = 4
3k

• rk = 1
k10

• rk = 0.707k

• rk = 0.7072k
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Problem 5. One test is simpler, than another.

Determine the convergence or divergence of the following sequence:

rk = 1
kk
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Problem 6. Quadratic convergence.

Show, that the following sequence does not have a quadratic convergence.

rk = 1
3k2
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