Basic linear algebra recap. Convergence rates. Line Search

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Basic linear algebra recap

- Naive matmul $\mathcal{O}\left(n^{3}\right)$, naive matvec $\mathcal{O}\left(n^{2}\right)$

Basic linear algebra recap

- Naive matmul $\mathcal{O}\left(n^{3}\right)$, naive matvec $\mathcal{O}\left(n^{2}\right)$
- All matrices have SVD

$$
A=U \Sigma V^{T}
$$

Basic linear algebra recap

- Naive matmul $\mathcal{O}\left(n^{3}\right)$, naive matvec $\mathcal{O}\left(n^{2}\right)$
- All matrices have SVD

$$
A=U \Sigma V^{T}
$$

- $\operatorname{tr}(A B C D)=\operatorname{tr}(D A B C)=\operatorname{tr}(C D A B)=\operatorname{tr}(B C D A)$ for any matrices ABCD if the multiplication defined.

Basic linear algebra recap

- Naive matmul $\mathcal{O}\left(n^{3}\right)$, naive matvec $\mathcal{O}\left(n^{2}\right)$
- All matrices have SVD

$$
A=U \Sigma V^{T}
$$

- $\operatorname{tr}(A B C D)=\operatorname{tr}(D A B C)=\operatorname{tr}(C D A B)=\operatorname{tr}(B C D A)$ for any matrices ABCD if the multiplication defined.
- $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)$

Convergence rate

Figure 1: Illustration of different convergence rates

- Linear (geometricm, exponential) convergence:

$$
r_{k} \leq C q^{k}, \quad 0<q<1, C>0
$$

Convergence rate

Figure 1: Illustration of different convergence rates

- Linear (geometricm, exponential) convergence:

$$
r_{k} \leq C q^{k}, \quad 0<q<1, C>0
$$

- Any convergent sequence, that is slower (faster) than any linearly convergent sequence has sublinear (superlinear) convergence

Root test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$
q=\lim _{k \rightarrow \infty} \sup _{k} r_{k}^{1 / k}
$$

- If $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.

Root test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$
q=\lim _{k \rightarrow \infty} \sup _{k} r_{k}^{1 / k}
$$

- If $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.

Root test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$
q=\lim _{k \rightarrow \infty} \sup _{k} r_{k}^{1 / k}
$$

- If $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If $q=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.

Root test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$
q=\lim _{k \rightarrow \infty} \sup _{k} r_{k}^{1 / k}
$$

- If $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If $q=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $q>1$ is impossible.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q=\lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q=\lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- If $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q=\lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- If $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}>1$ is impossible.

Ratio test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists q and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q=\lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- If $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}>1$ is impossible.
- In all other cases (i.e., when $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}<1 \leq \lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}$) we cannot claim anything concrete about the convergence rate $\left\{r_{k}\right\}_{k=m}^{\infty}$.

Line search

Typical line search problem is finding the good value α of the stepsize:

$$
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)
$$

Line search methods

- Solution localization methods:

Line search methods

- Solution localization methods:
- Dichotomy search method

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method
- Inexact line search:

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method
- Inexact line search:
- Sufficient decrease

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method
- Inexact line search:
- Sufficient decrease
- Goldstein conditions

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method
- Inexact line search:
- Sufficient decrease
- Goldstein conditions
- Curvature conditions

Line search methods

- Solution localization methods:
- Dichotomy search method
- Golden selection search method
- Inexact line search:
- Sufficient decrease
- Goldstein conditions
- Curvature conditions
- The idea behind backtracking line search

Problem 1. Stupid important idea on matrix computations.

Suppose, you have the following expression

$$
b=A_{1} A_{2} A_{3} x,
$$

where the $A_{1}, A_{2}, A_{3} \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^{n}$ - vector. You need to compute b . Which one way is the best to do it?

1. $A_{1} A_{2} A_{3} x$ (from left to right)

Check the simple $\boldsymbol{\gtrless}$ code snippet after all.

Problem 1. Stupid important idea on matrix computations.

Suppose, you have the following expression

$$
b=A_{1} A_{2} A_{3} x,
$$

where the $A_{1}, A_{2}, A_{3} \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^{n}$ - vector. You need to compute b . Which one way is the best to do it?

1. $A_{1} A_{2} A_{3} x$ (from left to right)
2. $\left(A_{1}\left(A_{2}\left(A_{3} x\right)\right)\right)$ (from right to left)

Check the simple $\boldsymbol{\rightleftarrows}$ code snippet after all.

Problem 1. Stupid important idea on matrix computations.

Suppose, you have the following expression

$$
b=A_{1} A_{2} A_{3} x,
$$

where the $A_{1}, A_{2}, A_{3} \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^{n}$ - vector. You need to compute b . Which one way is the best to do it?

1. $A_{1} A_{2} A_{3} x$ (from left to right)
2. $\left(A_{1}\left(A_{2}\left(A_{3} x\right)\right)\right)$ (from right to left)
3. It does not matter

Check the simple $\boldsymbol{\rightleftarrows}$ code snippet after all.

Problem 1. Stupid important idea on matrix computations.

Suppose, you have the following expression

$$
b=A_{1} A_{2} A_{3} x,
$$

where the $A_{1}, A_{2}, A_{3} \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^{n}$ - vector. You need to compute b .
Which one way is the best to do it?

1. $A_{1} A_{2} A_{3} x$ (from left to right)
2. $\left(A_{1}\left(A_{2}\left(A_{3} x\right)\right)\right)$ (from right to left)
3. It does not matter
4. The results of the first two options will not be the same.

Check the simple $\boldsymbol{\rightleftarrows}$ code snippet after all.

Problem 2. Connection between Frobenius norm and singular values.

Let $A \in \mathbb{R}^{m \times n}$, and let $q:=\min \{m, n\}$. Show that

$$
\|A\|_{F}^{2}=\sum_{i=1}^{q} \sigma_{i}^{2}(A),
$$

where $\sigma_{1}(A) \geq \ldots \geq \sigma_{q}(A) \geq 0$ are the singular values of matrix A. Hint: use the connection between Frobenius norm and scalar product and SVD.

Problem 3. Known your inner product.

Simplify the following expression:

$$
\sum_{i=1}^{n}\left\langle S^{-1} a_{i}, a_{i}\right\rangle
$$

where $S=\sum_{i=1}^{n} a_{i} a_{i}^{T}, a_{i} \in \mathbb{R}^{n}, \operatorname{det}(S) \neq 0$

Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:

- $r_{k}=\frac{1}{3^{k}}$

Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:

- $r_{k}=\frac{1}{3^{k}}$
- $r_{k}=\frac{4}{3^{k}}$

Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:

- $r_{k}=\frac{1}{3^{k}}$
- $r_{k}=\frac{4}{3^{k}}$
- $r_{k}=\frac{1}{k^{10}}$

Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:

- $r_{k}=\frac{1}{3^{k}}$
- $r_{k}=\frac{4}{3^{k}}$
- $r_{k}=\frac{1}{k^{10}}$
- $r_{k}=0.707^{k}$

Problem 4. Simple convergence rates

Determine the convergence or divergence of the given sequences:

- $r_{k}=\frac{1}{3^{k}}$
- $r_{k}=\frac{4}{3^{k}}$
- $r_{k}=\frac{1}{k^{10}}$
- $r_{k}=0.707^{k}$
- $r_{k}=0.707^{2^{k}}$

Problem 5. One test is simpler, than another.

Determine the convergence or divergence of the following sequence:

$$
r_{k}=\frac{1}{k^{k}}
$$

Problem 6. Quadratic convergence.

Show, that the following sequence does not have a quadratic convergence.

$$
r_{k}=\frac{1}{3^{k^{2}}}
$$

