Basic linear algebra recap. Convergence rates. Line Search

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

• Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$

- Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

 $A = U\Sigma V^T$

- Naive matmul $\mathcal{O}(n^3),$ naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

 $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$

• tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) for any matrices ABCD if the multiplication defined.

- Naive matmul $\mathcal{O}(n^3),$ naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

 $A = U\Sigma V^T$

• tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) for any matrices ABCD if the multiplication defined. • $\langle A, B \rangle = tr(A^TB)$

Convergence rate

Figure 1: Illustration of different convergence rates

• Linear (geometricm, exponential) convergence:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

Convergence rate

Figure 1: Illustration of different convergence rates

• Linear (geometricm, exponential) convergence:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

• Any convergent sequence, that is slower (faster) than any linearly convergent sequence has sublinear (superlinear) convergence

 $f \rightarrow \min_{x,y,z}$ Lecture reminder

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

• If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q = 1, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.

Let $\{r_k\}_{k=m}^\infty$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q = 1, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.
- The case q > 1 is impossible.

Let $\{r_k\}_{k=m}^\infty$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

• If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- exceeding q. • If $\lim_{k\to\infty} \inf_k \frac{r_{k+1}}{r_k} = 1$, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- If $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} = 1$, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} > 1$ is impossible.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not
- exceeding q. If $\lim_{k\to\infty} \inf_k \frac{r_{k+1}}{r_k} = 1$, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $\lim_{k\to\infty} \inf_k \frac{r_{k+1}}{r_k} > 1$ is impossible.
- In all other cases (i.e., when $\lim_{k\to\infty} \inf_k \frac{r_{k+1}}{r_k} < 1 \le \lim_{k\to\infty} \sup_k \frac{r_{k+1}}{r_k}$) we cannot claim anything concrete about the convergence rate $\{r_k\}_{k=m}^{\infty}$.

Line search

Typical line search problem is finding the good value α of the stepsize:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

 $f \rightarrow \min_{x,y,z}$ Lecture reminder

• Solution localization methods:

- Solution localization methods:
 - Dichotomy search method

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions
 - The idea behind backtracking line search

Suppose, you have the following expression

 $b = A_1 A_2 A_3 x,$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b. Which one way is the best to do it?

1. $A_1A_2A_3x$ (from left to right)

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b. Which one way is the best to do it?

1. $A_1A_2A_3x$ (from left to right) 2. $(A_1(A_2(A_3x)))$ (from right to left)

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b. Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right) 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b. Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter
- 4. The results of the first two options will not be the same.

Problem 2. Connection between Frobenius norm and singular values.

Let $A \in \mathbb{R}^{m \times n}$, and let $q := \min\{m, n\}$. Show that

$$|A||_{F}^{2} = \sum_{i=1}^{q} \sigma_{i}^{2}(A),$$

where $\sigma_1(A) \ge \ldots \ge \sigma_q(A) \ge 0$ are the singular values of matrix A. Hint: use the connection between Frobenius norm and scalar product and SVD.

Problem 3. Known your inner product.

Simplify the following expression:

$$\sum_{i=1}^{n} \langle S^{-1}a_i, a_i \rangle,$$

where
$$S = \sum_{i=1}^{n} a_i a_i^T, a_i \in \mathbb{R}^n, \det(S) \neq 0$$

Determine the convergence or divergence of the given sequences:

• $r_k = \frac{1}{3^k}$

•
$$r_k = \frac{1}{3^k}$$

• $r_k = \frac{4}{3^k}$

•
$$r_k = \frac{1}{3^k}$$

• $r_k = \frac{4}{3^k}$
• $r_k = \frac{1}{k^{10}}$

•
$$r_k = \frac{1}{3^k}$$

• $r_k = \frac{4}{3^k}$
• $r_k = \frac{1}{k^{10}}$
• $r_k = 0.707^k$

•
$$r_k = \frac{1}{3^k}$$

• $r_k = \frac{4}{3^k}$
• $r_k = \frac{1}{k^{10}}$
• $r_k = 0.707^k$

•
$$r_k = 0.707^2$$

Problem 5. One test is simpler, than another.

$$r_k = \frac{1}{k^k}$$

Problem 6. Quadratic convergence.

Show, that the following sequence does not have a quadratic convergence.

$$r_k = \frac{1}{3^{k^2}}$$

