Discover acceleration of gradient descent

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

GD. Convergence rates

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \quad \kappa=\frac{L}{\mu}
$$

Upper bound

$$
f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{k}\right)
$$

$$
\left\|x_{k}-x^{*}\right\|^{2} \approx \mathcal{O}\left(\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\right)
$$

Lower bound

$$
f\left(x_{k}\right)-f^{*} \approx \Omega\left(\frac{1}{k^{2}}\right)
$$

$$
\left\|x_{k}-x^{*}\right\|^{2} \approx \Omega\left(\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\right)
$$

Three update schemes

- Normal gradient

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

Move the point \boldsymbol{x}_{k} in the direction $-\nabla f\left(\boldsymbol{x}_{k}\right)$ for $\alpha_{k}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|$ amount.

Three update schemes

- Normal gradient

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

Move the point \boldsymbol{x}_{k} in the direction $-\nabla f\left(\boldsymbol{x}_{k}\right)$ for $\alpha_{k}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|$ amount.

- Polyak's Heavy Ball Method

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
$$

Perform a GD, move the updated- \boldsymbol{x} in the direction of the previous step for $\beta_{k}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right\|$ amount.

Three update schemes

- Normal gradient

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

Move the point \boldsymbol{x}_{k} in the direction $-\nabla f\left(\boldsymbol{x}_{k}\right)$ for $\alpha_{k}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|$ amount.

- Polyak's Heavy Ball Method

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
$$

Perform a GD, move the updated- \boldsymbol{x} in the direction of the previous step for $\beta_{k}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right\|$ amount.

- Nesterov's acceleration

$$
\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)\right)+\beta_{k}\left(x_{k}-x_{k-1}\right)
$$

Move the not-yet-updated- \boldsymbol{x} in the direction of the previous step for $\beta_{k}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right\|$ amount, perform a GD on the shifted- \boldsymbol{x}, then move the updated- \boldsymbol{x} in the direction of the previous step for $\beta_{k}\left\|x_{k}-x_{k-1}\right\|$.

HBM for a quadratic problem

Question

Which step size strategy is used for GD?

Figure 1: GD vs. HBM with fixed β.

Observation: for nice f (with spherical level sets), GD is already good enough and HBM adds a little effect. However, for bad f (with elliptic level sets), HBM is better in some cases.

HBM for a quadratic problem

Figure 2: GD with $\alpha=\frac{1}{L}$ vs. HBM with fixed β.
Observation: same. If nice f (spherical lv. sets), GD is already good enough. If bad f (with elliptic lv. sets), HBM is better in some cases.

NAG as a Momentum Method

- Start by setting $k=0, a_{0}=1, \boldsymbol{x}_{-1}=\boldsymbol{y}_{0}, \boldsymbol{y}_{0}$ to an arbitrary parameter setting, iterates

$$
\begin{gather*}
\text { Gradient update } \boldsymbol{x}_{k}=\boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right) \tag{1}\\
\text { Extrapolation weight } a_{k+1}=\frac{1+\sqrt{1+4 a_{k}^{2}}}{2} \tag{2}\\
\text { Extrapolation } \boldsymbol{y}_{k+1}=\boldsymbol{x}_{k}+\frac{a_{k}-1}{a_{k+1}}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right) \tag{3}
\end{gather*}
$$

Note that here fix step-size is used: $\alpha_{k}=\frac{1}{L} \forall k$.

- Theorem. If f is L-smooth and convex, the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}_{k}$ produced by NAG convergences to the optimal value f^{*} as the rate $\mathcal{O}\left(\frac{1}{k^{2}}\right)$ as

$$
f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \frac{4 L\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}}{(k+2)^{2}}
$$

- The above representation is difficult to understand, so we will rewrite these equations in a more intuitive manner.

NAG as a Momentum Method

If we define

$$
\begin{gather*}
\boldsymbol{v}_{k} \equiv \boldsymbol{x}_{k}-\boldsymbol{x}_{k-1} \tag{4}\\
\beta_{k} \equiv \frac{a_{k}-1}{a_{k+1}} \tag{5}
\end{gather*}
$$

then the combination of Equation 3 and Equation 5 implies:

$$
\boldsymbol{y}_{k}=\boldsymbol{x}_{k-1}+\beta_{k-1} \boldsymbol{v}_{k-1}
$$

which can be used to rewrite Equation 1 as follows using $\alpha_{k}=\alpha_{k-1}$:

$$
\begin{gather*}
\boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}+\beta_{k-1} \boldsymbol{v}_{k-1}-\alpha_{k-1} \nabla f\left(\boldsymbol{x}_{k-1}+\beta_{k-1} \boldsymbol{v}_{k-1}\right) \tag{6}\\
\boldsymbol{v}_{k}=\beta_{k-1} \boldsymbol{v}_{k-1}-\alpha_{k-1} \nabla f\left(\boldsymbol{x}_{k-1}+\beta_{k-1} \boldsymbol{v}_{k-1}\right) \tag{7}
\end{gather*}
$$

where Equation 7 is a consequence of Equation 4. Alternatively:

$$
\begin{gathered}
\boldsymbol{v}_{k+1}=\beta_{k} \boldsymbol{v}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}+\beta_{k} \boldsymbol{v}_{k}\right) \\
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{v}_{k+1}
\end{gathered}
$$

where $\alpha_{k}>0$ is the learning rate, β_{k} is the momentum coefficient. Compare HBM with NAG.

NAG for a quadratic problem

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} q(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x, \text { where } A \in \mathbb{S}_{++}^{d} .
$$

Every symmetric matrix A has an eigenvalue decomposition

$$
A=Q \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) Q^{T}=Q \Lambda Q^{T}, \quad Q=\left[q_{1}, \ldots, q_{n}\right]
$$

and, as per convention, we will assume that the λ_{i} 's are sorted, from smallest λ_{1} to biggest λ_{n}. It is clear, that λ_{i} correspond to the curvature along the associated eigenvector directions.

We can reparameterize $q(x)$ by the matrix transform Q and optimize $y=Q x$ using the objective

$$
p(y) \equiv q(x)=q\left(Q^{\top} y\right)=y^{\top} Q\left(Q^{\top} \Lambda Q\right) Q^{\top} y / 2-b^{\top} Q^{\top} y=y^{\top} \Lambda y / 2-c^{\top} y
$$

where $c=Q b$.
We can further rewrite p as

$$
p(y)=\sum_{i=1}^{n}[p]_{i}\left([y]_{i}\right)
$$

where $[p]_{i}(t)=\lambda_{i} t^{2} / 2-[c]_{i} t$.

NAG for a quadratic problem

- Theorem 2.1 from [1].

Let $p(y)=\sum_{i=1}^{n}[p]_{i}\left([y]_{i}\right)$ such that $[p]_{i}(t)=\lambda_{i} t^{2} / 2-\left[c c_{i}\right.$ t. Let α be arbitrary and fixed. Denote by $\operatorname{HBM}_{x}(\beta, p, y, v)$ and $\operatorname{HBM}_{v}(\beta, p, y, v)$ the parameter vector and the velocity vector respectively, obtained by applying one step of HBM (i.e., Eq. 1 and then Eq. 2) to the function p at point y, with velocity v, momentum coefficient β, and learning rate α. Define NAG_{x} and NAG_{v} analogously. Then the following holds for $z \in\{x, v\}$:

$$
\begin{gathered}
\operatorname{HBM}_{z}(\beta, p, y, v)=\left[\begin{array}{c}
\operatorname{HBM}_{z}\left(\beta,[p]_{1},[y]_{1},[v]_{1}\right) \\
\vdots \\
\operatorname{HBM}_{z}\left(\beta,[p]_{n},[y]_{n},[v]_{n}\right)
\end{array}\right] \\
\operatorname{NAG}_{z}(\beta, p, y, v)=\left[\begin{array}{c}
\operatorname{HBM}_{z}\left(\beta\left(1-\alpha \lambda_{1}\right),[p]_{1},[y]_{1},[v]_{1}\right) \\
\vdots \\
\operatorname{HBM}_{z}\left(\beta\left(1-\alpha \lambda_{n}\right),[p]_{n},[y]_{n},[v]_{n}\right)
\end{array}\right]
\end{gathered}
$$

NAG for a quadratic problem. Proof (1/2)

Proof:

It's easy to show that if

$$
\begin{aligned}
x_{i+1} & =\operatorname{HBM}_{x}\left(\beta_{i},[q]_{i},[x]_{i},[v]_{i}\right) \\
v_{i+1} & =\operatorname{HBM}_{v}\left(\beta_{i},[q]_{i},[x]_{i},[v]_{i}\right)
\end{aligned}
$$

then for $y_{i}=Q x_{i}, w_{i}=Q v_{i}$

$$
\begin{aligned}
y_{i+1} & =\operatorname{HBM}_{x}\left(\beta_{i},[p]_{i},[y]_{i},[w]_{i}\right) \\
w_{i+1} & =\operatorname{HBM}_{v}\left(\beta_{i},[p]_{i},[y]_{i},[w]_{i}\right)
\end{aligned}
$$

Then, consider one step of HBM_{v} :

$$
\begin{aligned}
& \operatorname{HBM}_{v}(\beta, p, y, v)=\beta v-\alpha \nabla p(y) \\
& =\left(\beta[v]_{1}-\alpha \nabla_{[y]_{1}} p(y), \ldots, \beta[v]_{n}-\alpha \nabla_{[y]_{n}} p(y)\right) \\
& =\left(\beta[v]_{1}-\alpha \nabla[p]_{1}\left([y]_{1}\right), \ldots, \beta[v]_{n}-\alpha \nabla[p]_{n}\left([y]_{n}\right)\right) \\
& =\left(\operatorname{HBM}_{v}\left(\beta_{1},[p]_{1},[y]_{1},[v]_{1}\right), \ldots, \operatorname{HBM}_{v}\left(\beta_{i},[p]_{i},[y]_{i},[v]_{i}\right)\right)
\end{aligned}
$$

This shows that one step of HBM_{v} on p is precisely equivalent to n simultaneous applications of HBM_{v} to the one-dimensional quadratics $[p]_{i}$, all with the same β and α. Similarly, for HBM_{x}.

NAG for a quadratic problem. Proof (2/2)

Next we show that NAG, applied to a one-dimensional quadratic with a momentum coefficient β, is equivalent to HBM applied to the same quadratic and with the same learning rate, but with a momentum coefficient $\beta(1-\alpha \lambda)$. We show this by expanding $\operatorname{NAG}_{v}\left(\beta,[p]_{i}, y, v\right)$ (where y and v are scalars):

$$
\begin{aligned}
\operatorname{NAG}_{v}\left(\beta,[p]_{i}, y, v\right) & =\beta v-\alpha \nabla[p]_{i}(y+\beta v) \\
& =\beta v-\alpha\left(\lambda_{i}(y+\beta v)-c_{i}\right) \\
& =\beta v-\alpha \lambda_{i} \beta v-\alpha\left(\lambda_{i} y-c_{i}\right) \\
& =\beta\left(1-\alpha \lambda_{i}\right) v-\alpha \nabla[p]_{i}(y) \\
& =\operatorname{HBM}_{v}\left(\beta\left(1-\alpha \lambda_{i}\right),[p]_{i}, y, v\right) .
\end{aligned}
$$

QED.

Observations:

- HBM and NAG become equivalent when α is small (when $\alpha \lambda \ll 1$ for every eigenvalue λ of A), so NAG and HBM are distinct only when α is reasonably large.
- When α is relatively large, NAG uses smaller effective momentum for the high-curvature eigen-directions, which prevents oscillations (or divergence) and thus allows the use of a larger β than is possible with CM for a given α.

NAG for DL

task	$0_{(\mathrm{SGD})}$	0.9 N	0.99 N	0.995 N	0.999 N	0.9 M	0.99 M	0.995 M	0.999 M	$\mathrm{SGD}_{\mathrm{C}}$	HF^{\dagger}
Curves	0.48	0.16	0.096	0.091	$\mathbf{0 . 0 7 4}$	0.15	0.10	0.10	0.10	0.16	0.058
Mnist	2.1	1.0	$\mathbf{0 . 7 3}$	0.75	0.80	1.0	0.77	0.84	0.90	0.9	0.69
Faces	36.4	14.2	8.5	7.8	$\mathbf{7 . 7}$	15.3	8.7	8.3	9.3	NA	7.5

Figure 3: The table reports the squared errors on the problems for each combination of $\beta_{\max }$ and a momentum type (NAG, CM). When $\beta_{\max }$ is 0 the choice of NAG vs CM is of no consequence so the training errors are presented in a single column. For each choice of $\beta_{\text {max }}$, the highest-performing learning rate is used. The column SGD_{C} lists the results of Chapelle \& Erhan (2011) who used 1.7M SGD steps and tanh networks. The column HF^{\dagger} lists the results of HF without L2 regularization; and the column HF* lists the results of Martens (2010).

References and Python Examples

- Figures for HBM was taken from the presentation. Visit site for more tutorials.
- Why Momentum Really Works. Link.
- Run code in ${ }^{2}$ Colab. The code taken from (
- On the importance of initialization and momentum in deep learning. Link.

