
Discover acceleration of gradient descent

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

GD. Convergence rates

min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk) κ = L

µ

smooth & convex smooth & strongly convex (or PL)

Upper bound f(xk) − f∗ ≈ O
(1

k

)
∥xk − x∗∥2 ≈ O

((
κ − 1
κ + 1

)k
)

Lower bound f(xk) − f∗ ≈ Ω
(1

k2

)
∥xk − x∗∥2 ≈ Ω

((√
κ − 1√
κ + 1

)k
)

Lecture recap v § } 2

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Three update schemes

• Normal gradient
xk − αk∇f(xk)

Move the point xk in the direction −∇f(xk) for αk∥∇f(xk)∥ amount.

• Polyak’s Heavy Ball Method
xk − αk∇f(xk) + βk(xk − xk−1)

Perform a GD, move the updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount.
• Nesterov’s acceleration

xk − αk∇f(xk + βk(xk − xk−1))+βk(xk − xk−1)

Move the not-yet-updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount,
perform a GD on the shifted-x, then move the updated-x in the direction of the previous step for
βk∥xk − xk−1∥.

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Three update schemes

• Normal gradient
xk − αk∇f(xk)

Move the point xk in the direction −∇f(xk) for αk∥∇f(xk)∥ amount.
• Polyak’s Heavy Ball Method

xk − αk∇f(xk) + βk(xk − xk−1)

Perform a GD, move the updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount.

• Nesterov’s acceleration

xk − αk∇f(xk + βk(xk − xk−1))+βk(xk − xk−1)

Move the not-yet-updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount,
perform a GD on the shifted-x, then move the updated-x in the direction of the previous step for
βk∥xk − xk−1∥.

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Three update schemes

• Normal gradient
xk − αk∇f(xk)

Move the point xk in the direction −∇f(xk) for αk∥∇f(xk)∥ amount.
• Polyak’s Heavy Ball Method

xk − αk∇f(xk) + βk(xk − xk−1)

Perform a GD, move the updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount.
• Nesterov’s acceleration

xk − αk∇f(xk + βk(xk − xk−1))+βk(xk − xk−1)

Move the not-yet-updated-x in the direction of the previous step for βk∥xk − xk−1∥ amount,
perform a GD on the shifted-x, then move the updated-x in the direction of the previous step for
βk∥xk − xk−1∥.

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

HBM for a quadratic problem

ñ Question

Which step size
strategy is used
for GD?

Figure 1: GD vs. HBM with fixed β.

Observation: for nice f (with spherical level sets), GD is already good enough and HBM adds a little effect.
However, for bad f (with elliptic level sets), HBM is better in some cases.

Lecture recap v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

HBM for a quadratic problem

Figure 2: GD with α =
1
L

vs. HBM with fixed β.

Observation: same. If nice f (spherical lv. sets), GD is already good enough. If bad f (with elliptic lv. sets), HBM is
better in some cases.

Lecture recap v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG as a Momentum Method

• Start by setting k = 0, a0 = 1, x−1 = y0, y0 to an arbitrary parameter setting, iterates

Gradient update xk = yk − αk∇f(yk) (1)

Extrapolation weight ak+1 =
1 +

√
1 + 4a2

k

2 (2)

Extrapolation yk+1 = xk + ak − 1
ak+1

(xk − xk+1) (3)

Note that here fix step-size is used: αk = 1
L

∀k.
• Theorem. If f is L-smooth and convex, the sequence {f(xk)}k produced by NAG convergences to the optimal

value f∗ as the rate O(1
k2) as

f(xk) − f∗ ≤ 4L∥xk − x∗∥2

(k + 2)2

• The above representation is difficult to understand, so we will rewrite these equations in a more intuitive
manner.

NAG for DL v § } 6

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG as a Momentum Method
If we define

vk ≡ xk − xk−1 (4)

βk ≡ ak − 1
ak+1

(5)

then the combination of Equation 3 and Equation 5 implies:

yk = xk−1 + βk−1vk−1

which can be used to rewrite Equation 1 as follows using αk = αk−1:

xk = xk−1 + βk−1vk−1 − αk−1∇f(xk−1 + βk−1vk−1) (6)

vk = βk−1vk−1 − αk−1∇f(xk−1 + βk−1vk−1) (7)

where Equation 7 is a consequence of Equation 4. Alternatively:

vk+1 = βkvk − αk∇f(xk+βkvk)

xk+1 = xk + vk+1

where αk > 0 is the learning rate, βk is the momentum coefficient. Compare HBM with NAG.
NAG for DL v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG for a quadratic problem
Consider the following quadratic optimization problem:

min
x∈Rd

q(x) = min
x∈Rd

1
2x⊤Ax − b⊤x, where A ∈ Sd

++.

Every symmetric matrix A has an eigenvalue decomposition

A = Qdiag (λ1, . . . , λn) QT = QΛQT , Q = [q1, . . . , qn].

and, as per convention, we will assume that the λi’s are sorted, from smallest λ1 to biggest λn. It is clear, that λi

correspond to the curvature along the associated eigenvector directions.

We can reparameterize q(x) by the matrix transform Q and optimize y = Qx using the objective

p(y) ≡ q(x) = q(Q⊤y) = y⊤Q(Q⊤ΛQ)Q⊤y/2 − b⊤Q⊤y = y⊤Λy/2 − c⊤y,

where c = Qb.

We can further rewrite p as

p(y) =
n∑

i=1

[p]i([y]i),

where [p]i(t) = λit
2/2 − [c]it.

NAG for DL v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG for a quadratic problem

� Theorem 2.1 from [1].

Let p(y) =
∑n

i=1[p]i([y]i) such that [p]i(t) = λit
2/2 − [c]it. Let α be arbitrary and fixed. Denote by

HBMx(β, p, y, v) and HBMv(β, p, y, v) the parameter vector and the velocity vector respectively, obtained
by applying one step of HBM (i.e., Eq. 1 and then Eq. 2) to the function p at point y, with velocity v,
momentum coefficient β, and learning rate α. Define NAGx and NAGv analogously. Then the following holds
for z ∈ {x, v}:

HBMz(β, p, y, v) =


HBMz(β, [p]1, [y]1, [v]1)

...
HBMz(β, [p]n, [y]n, [v]n)



NAGz(β, p, y, v) =


HBMz(β(1 − αλ1), [p]1, [y]1, [v]1)

...
HBMz(β(1 − αλn), [p]n, [y]n, [v]n)



NAG for DL v § } 9

https://www.cs.toronto.edu/~gdahl/papers/momentumNesterovDeepLearning.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG for a quadratic problem. Proof (1/2)
Proof:

It’s easy to show that if
xi+1 = HBMx(βi, [q]i, [x]i, [v]i)

vi+1 = HBMv(βi, [q]i, [x]i, [v]i)

then for yi = Qxi, wi = Qvi

yi+1 = HBMx(βi, [p]i, [y]i, [w]i)

wi+1 = HBMv(βi, [p]i, [y]i, [w]i)

. Then, consider one step of HBMv:

HBMv(β, p, y, v) = βv − α∇p(y)
= (β[v]1 − α∇[y]1 p(y), . . . , β[v]n − α∇[y]n p(y))
= (β[v]1 − α∇[p]1([y]1), . . . , β[v]n − α∇[p]n([y]n))
= (HBMv(β1, [p]1, [y]1, [v]1), . . . , HBMv(βi, [p]i, [y]i, [v]i))

This shows that one step of HBMv on p is precisely equivalent to n simultaneous applications of HBMv to the
one-dimensional quadratics [p]i, all with the same β and α. Similarly, for HBMx.

NAG for DL v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG for a quadratic problem. Proof (2/2)

Next we show that NAG, applied to a one-dimensional quadratic with a momentum coefficient β, is equivalent to
HBM applied to the same quadratic and with the same learning rate, but with a momentum coefficient β(1 − αλ).
We show this by expanding NAGv(β, [p]i, y, v) (where y and v are scalars):

NAGv(β, [p]i, y, v) = βv − α∇[p]i(y + βv)
= βv − α(λi(y + βv) − ci)
= βv − αλiβv − α(λiy − ci)
= β(1 − αλi)v − α∇[p]i(y)
= HBMv(β(1 − αλi), [p]i, y, v).

QED.

Observations:
• HBM and NAG become equivalent when α is small (when αλ ≪ 1 for every eigenvalue λ of A), so NAG and

HBM are distinct only when α is reasonably large.
• When α is relatively large, NAG uses smaller effective momentum for the high-curvature eigen-directions, which

prevents oscillations (or divergence) and thus allows the use of a larger β than is possible with CM for a given
α.

NAG for DL v § } 11

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

NAG for DL

Figure 3: The table reports the squared errors on the problems for each combination of βmax and a momentum type (NAG,
CM). When βmax is 0 the choice of NAG vs CM is of no consequence so the training errors are presented in a single column.
For each choice of βmax, the highest-performing learning rate is used. The column SGDC lists the results of Chapelle & Erhan
(2011) who used 1.7M SGD steps and tanh networks. The column HF† lists the results of HF without L2 regularization; and
the column HF∗ lists the results of Martens (2010).

NAG for DL v § } 12

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

References and Python Examples

• Figures for HBM was taken from the presentation. Visit site for more tutorials.
• Why Momentum Really Works. Link.
• Run code in 3Colab. The code taken from §.
• On the importance of initialization and momentum in deep learning. Link.

NAG for DL v § } 13

https://angms.science/doc/teaching/GDLS.pdf
https://angms.science
https://distill.pub/2017/momentum/
https://drive.google.com/file/d/1Qtnazye0_wz47Q0tRyaV0w0_EhCMouME/view?usp=sharing
https://github.com/amkatrutsa/optimization_course/blob/master/Spring2022/hb_acc_grad.ipynb
https://www.cs.toronto.edu/~gdahl/papers/momentumNesterovDeepLearning.pdf
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Lecture recap
	NAG for DL

