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GD. Convergence rates
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Three update schemes

® Normal gradient
T — aka(a:k)

Move the point @) in the direction —V f(xx) for ai||V f(zk)| amount.
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Three update schemes

® Normal gradient
T — aka(mk)
Move the point @) in the direction —V f(xx) for ai||V f(zk)| amount.

® Polyak’s Heavy Ball Method
xp — arVf(zy) + Br(zr — Tr—1)

Perform a GD, move the updated-z in the direction of the previous step for Bx||xr — r—1| amount.
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Three update schemes

® Normal gradient
T — aka(a:k)

Move the point @) in the direction —V f(xx) for ai||V f(zk)| amount.

® Polyak’s Heavy Ball Method
xp — arVf(zy) + Br(zr — Tr—1)

Perform a GD, move the updated-z in the direction of the previous step for S|, — xr—1| amount.

® Nesterov’s acceleration
T — ak,v,f(:ck + Bk(wk — mk_1))+ k(e — Tr—1)

Move the not-yet-updated- in the direction of the previous step for Si||zr — x—1|| amount,
perform a GD on the shifted-x, then move the updated-a in the direction of the previous step for

)’/, ‘ L LTk—1 ‘ .
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HBM for a quadratic problem
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Figure 1: GD vs. HBM with fixed 3.

Observation: for nice f (with spherical level sets), GD is already good enough and HBM adds a little effect.
However, for bad f (with elliptic level sets), HBM is better in some cases.
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HBM for a quadratic problem
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L

Figure 2: GD with o = — vs. HBM with fixed .

Observation: same. If nice f (spherical Iv. sets), GD is already good enough. If bad f (with elliptic lv. sets), HBM is
better in some cases.
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NAG as a Momentum Method

® Start by setting k = 0,a0 = 1,21 = y,, Y, to an arbitrary parameter setting, iterates

Gradient update zr = y;, — axV f(yy) (1)
14 /14 4a?
Extrapolation weight a1 = fk )
ar — 1

Extrapolation y,, = xx + (Tr — Trt1) (3)

Ak+1

Note that here fix step-size is used: ay = l Vk.
® Theorem. If f is L-smooth and convex, the sequence {f(x)}r produced by NAG convergences to the optimal
1
value f* as the rate O(?) as
w _ AL||xp —x*|?

® The above representation is difficult to understand, so we will rewrite these equations in a more intuitive
manner.
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NAG as a Momentum Method

If we define
Ve, =Tk — k-1

_ap—1
k= ———
Ak+1
then the combination of Equation 3 and Equation 5 implies:
Yy = Th—1 + Br—1Vk—1
which can be used to rewrite Equation 1 as follows using ar = ar—_1:

T = Th—1 + Pr—1Vk-1 — A1V f(Tp—1 + Br—1Vr—1)

Vi = Pr—1Vk—1 — @p—1V f(Th—1 + Br—1Vk—1)

where Equation 7 is a consequence of Equation 4. Alternatively:

V1 = Brvr — axV f(zp+Prvk)

Tp1 = T + V41

where ay > 0 is the learning rate, () is the momentum coefficient. Compare HBM with NAG.
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NAG for a quadratic problem

Consider the following quadratic optimization problem:

1
min ¢(z) = min —z ' Az — bz, where A € S .
zeR? zeRd

Every symmetric matrix A has an eigenvalue decomposition
A:Qdiag(Alw'w)‘n)QT:QAQT7 Q:[qla"~7q"]'

and, as per convention, we will assume that the \;'s are sorted, from smallest A; to biggest \,. It is clear, that \;
correspond to the curvature along the associated eigenvector directions.

We can reparameterize q(z) by the matrix transform @ and optimize y = Qx using the objective
py) =a(@) =a(Qy) =y QQTAQ)Q y/2-b'QTy =y Ay/2—cTy,
where ¢ = Qb.

We can further rewrite p as

p(y) = > [Pl

where [p;(t) = \it?/2 — [c]it.
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NAG for a quadratic problem

@ Theorem 2.1 from [1].

Let p(y) = Y [pli([yl:) such that [p];(t) = Xit?/2 — [c]it. Let o be arbitrary and fixed. Denote by
HBM. (8, p,y,v) and HBM, (8, p,y,v) the parameter vector and the velocity vector respectively, obtained
by applying one step of HBM (i.e., Eq. 1 and then Eq. 2) to the function p at point y, with velocity v,
momentum coefficient 3, and learning rate a. Define NAG, and NAG, analogously. Then the following holds

for z € {x,v}:
HBM..(3, [p]1, [y]1, [v]1)

HBM. (8, p,y,v) = :
HBM. (8, [pln, [yln, [v]n)
HBM.(B8(1 — a1), [pl1, [y], [v]1)
NAG:(8,p,y,v) = :
HBM. (B(1 — aAn), [pln; [Y]n, [v]n)
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NAG for a quadratic problem. Proof (1/2)

Proof:

It's easy to show that if
Tit1 = HBMCD(&’H [q}lv [l’]“ [U]l)
vit1 = HBMy (84, [q]s, [2]i, [v]:)
then for y; = Qx;, wi = Qu;
Yi+1 = HBM.(8s, [pls, [y]:, [w]:)
wi1 = HBMy (s, [pli, [y]:, [w]:)
. Then, consider one step of HBM,:

HBM. (8, p,y,v) = Bv — aVp(y)

= (B[v]1 — aV,p(Y), .- - Blv]n — aViy, p(y))

= (Bl — aV[pli([yh), .-, Blv]n — aV[pla([yln))

= (HBMy (81, [pl1, [y]1, [v]1), - - ., HBMu (Bi, [pli, [y]:, [v]0))

This shows that one step of HBM,, on p is precisely equivalent to n simultaneous applications of HBM,, to the
one-dimensional quadratics [p];, all with the same 8 and «. Similarly, for HBM,.
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NAG for a quadratic problem. Proof (2/2)

Next we show that NAG, applied to a one-dimensional quadratic with a momentum coefficient 3, is equivalent to
HBM applied to the same quadratic and with the same learning rate, but with a momentum coefficient 5(1 — a)).
We show this by expanding NAG, (8, [p]:,y,v) (where y and v are scalars):

NAG, (B, [pli, y,v) = Bv — aV[pli(y + Bv)
= pv—a(Xi(y + Bv) — )
= fv — aXifv — a(liy — ¢;)
=B —aXi)v—aV[pli(y)
= HBM, (B8(1 — aX), [pi, y,v).

QED.

Observations:

® HBM and NAG become equivalent when « is small (when aX < 1 for every eigenvalue X of A), so NAG and
HBM are distinct only when « is reasonably large.

® When « is relatively large, NAG uses smaller effective momentum for the high-curvature eigen-directions, which
prevents oscillations (or divergence) and thus allows the use of a larger 3 than is possible with CM for a given
Q.
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NAG for DL

task Oep) || 0.9N | 0.99N | 0.995N | 0.999N || 0.9M | 0.99M | 0.995M | 0.999M || SGD¢ HF' [ HF”
Curves 0.48 0.16 | 0.096 0.091 0.074 0.15 0.10 0.10 0.10 0.16 0.058 [[ 0.11
Mnist 2.1 1.0 0.73 0.75 0.80 1.0 0.77 0.84 0.90 0.9 0.69 1.40
Faces 36.4 14.2 8.5 7.8 7.7 15.3 8.7 8.3 9.3 NA 7.5 12.0

Figure 3: The table reports the squared errors on the problems for each combination of Bymaz and a momentum type (NAG,
CM). When Bmaz is 0 the choice of NAG vs CM is of no consequence so the training errors are presented in a single column.
For each choice of Bmqz, the highest-performing learning rate is used. The column SGD¢ lists the results of Chapelle & Erhan
(2011) who used 1.7M SGD steps and tanh networks. The column HFT lists the results of HF without L2 regularization; and

the column HF* lists the results of Martens (2010).
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References and Python Examples

® Figures for HBM was taken from the presentation. Visit site for more tutorials.

® Why Momentum Really Works. Link.
Run code in ®Colab. The code taken from €).

® On the importance of initialization and momentum in deep learning. Link.
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