Subgradient and Subdifferencial

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Main notions recap

i Main notions
For a domain set $E \in \mathbb{R}^{n}$ and a function $f: E \rightarrow \mathbb{R}$:

- A vector $g \in \mathbb{R}^{n}$ is called subgradient of the function f at $x \in E$ if $\forall y \in E$

$$
f(y) \geq f(x)+g^{T}(y-x)
$$

- A set $\partial f(x)$ is called subdifferential of the function f at $x \in E$ if:

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n} \mid f(y) \geq f(x)+g^{T}(y-x)\right\} \forall y \in E
$$

- $f(\cdot)$ is called subdifferentiable at point $x \in E$ if $\partial f(x) \neq \emptyset$

Connection between subdifferentiation and convexity

Connection between subdifferentiation and convexity
If $f: E \rightarrow \mathbb{R}$ is subdifferentiable on the convex subset $S \in E$ then f is convex on S.

- The inverse is generally incorrect
- There is no sense to derive the subgradient of nonconvex function.

Connection between subdifferentiation and differentiation

- CConnection between subdifferentiation and differentiation

1) If $f: E \rightarrow \mathbb{R}$ is convex and differentiable at $x \in$ int E then $\partial f(x)=\{\Delta f(x)\}$
2) If $f: E \rightarrow \mathbb{R}$ is convex and for $x \in$ int $E \partial f(x)=\{s\}$ then f is differentiable at x and $\Delta f(x)=s$

- Derive the subdifferencial of a differentiable function is overkill.

Problem 1

Question

Find the subgradient of the function

$$
f(x)=-\sqrt{x}
$$

Subdifferentiation rules

1) $f: E \rightarrow \mathbb{R}, x \in E, c>0$

$$
\Rightarrow \partial(c f)(x)=c \partial f(x)
$$

2) $f: F \rightarrow \mathbb{R}, g: G \rightarrow \mathbb{R}, x \in F \bigcap G$

$$
\Rightarrow \partial(f+g)(x) \supseteq \partial f(x)+\partial g(x)
$$

3) $T: V \rightarrow W=A x+b, g: W \rightarrow \mathbb{R}, x_{0} \in V$

$$
\Rightarrow \partial(g \circ T)\left(x_{0}\right) \supseteq A^{*} \partial(g)\left(T\left(x_{0}\right)\right)
$$

4) $f(x)=\max \left(f_{1}(x), \ldots, f_{m}(x)\right), I(x)=\left\{i \in 1 \ldots m \mid f_{i}(x)=f(x)\right\}$

$$
\Rightarrow \partial f(x) \supseteq \operatorname{Conv}\left(\bigcup_{i \in I(x)} \partial f_{i}(x)\right)
$$

When is equality reached?
If abovementioned functions are convex and x is inner point then all inequalities turn into equalities.

Problem 2

Question

Find the subgradient of the function $f(x)+g(x)$ if

$$
\begin{gathered}
f(x)=-\sqrt{x} \text { when } x \geq 0 \\
g(x)=-\sqrt{-x} \text { when } x \leq 0
\end{gathered}
$$

Problem 3

Question

1) Find the subgradient of the function $f(x)=\|A x-b\|_{1}$;
2) For task $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \rightarrow \min _{x}$ say which lambdas lead to $x_{\text {opt }}=0$

Problem 4

Question

Check the differentiability of the function

$$
f(A)=\sup _{\|x\|_{2}=1} x^{T} A x, \text { where } A \in \mathbb{S}^{n}, x \in \mathbb{R}^{n}
$$

