
Conjugate gradient method

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

Optimality conditions:

∇f(x∗) = Ax∗ − b = 0 ⇐⇒ Ax∗ = b

4 2 0 2 4

4

2

0

2

4

Steepest Descent

4 2 0 2 4

4

2

0

2

4

Conjugate Gradient

Lecture recap v § } 2

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

Optimality conditions:

∇f(x∗) = Ax∗ − b = 0 ⇐⇒ Ax∗ = b

4 2 0 2 4

4

2

0

2

4

Steepest Descent

4 2 0 2 4

4

2

0

2

4

Conjugate Gradient

Lecture recap v § } 2

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)
We consider A ∈ Sd

++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)

We consider A ∈ Sd
++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)
We consider A ∈ Sd

++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

A-orthogonality

4 2 0 2 4
x

4

2

0

2

4

x
v1 and v2 are orthogonal

vT
1v2 = 0.00

vT
1Av2 = 1.19

4 2 0 2 4
x

4

2

0

2

4

x

v and v are A-orthogonal
v Tv = 0.80

v TAv = 0.00

Figure 1

Lecture recap v § } 6

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CG.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Convergence of the CG method

� Lemma 2

Suppose, we solve n-dimensional quadratic convex optimization problem. The conjugate directions method:

xk+1 = x0 +
k∑

i=0

αidi,

where αi = −d⊤
i (Axi − b)

d⊤
i Adi

taken from the line search, converges for at most n steps of the algorithm.

Lecture recap v § } 7

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk = r⊤
k rk

r⊤
k−1rk−1

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk = r⊤
k rk

r⊤
k−1rk−1

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk = r⊤
k rk

r⊤
k−1rk−1

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk = r⊤
k rk

r⊤
k−1rk−1

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

CG method in practice. Pseudocode
r0 := b − Ax0

if r0 is sufficiently small, then return x0 as the result
d0 := r0

k := 0
repeat

αk := rT
krk

dT
kAdk

xk+1 := xk + αkdk

rk+1 := rk − αkAdk

if rk+1 is sufficiently small, then exit loop

βk :=
rT

k+1rk+1

rT
krk

dk+1 := rk+1 + βkdk

k := k + 1
end repeat
return xk+1 as the result

Lecture recap v § } 9

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Non-linear conjugate gradient method
In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve
the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

xk+1 − xk = cdk,

where c is some kind of constant. Then for the quadratic case, we have:

∇f(xk+1) − ∇f(xk) = (Axk+1 − b) − (Axk − b) = A(xk+1 − xk) = cAdk

Expressing from this equation the work Adk = 1
c

(∇f(xk+1) − ∇f(xk)), we get rid of the “knowledge” of the
function in step definition βk, then point 4 will be rewritten as:

βk = ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
d⊤

k (∇f(xk+1) − ∇f(xk))
.

This method is called the Polack - Ribier method.
Lecture recap v § } 10

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Computational experiments

Run code in 3Colab. The code taken from §.

Computational experiments v § } 11

https://colab.research.google.com/drive/1N_PH8h8corIpVZSsXDzJ9Utpv7vVp6f6?usp=sharing
https://github.com/amkatrutsa/optimization_course/blob/master/Spring2022/cg.ipynb
https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

	Lecture recap
	Computational experiments

