Conjugate gradient method

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Strongly convex quadratics

 Consider the following quadratic optimization problem:$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d} .
$$

Optimality conditions:

$$
\nabla f\left(x^{*}\right)=A x^{*}-b=0 \Longleftrightarrow A x^{*}=b
$$

Strongly convex quadratics

Consider the following quadratic optimization problem:
$\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c$, where $A \in \mathbb{S}_{++}^{d}$.
Steepest Descent

Optimality conditions:

$$
\nabla f\left(x^{*}\right)=A x^{*}-b=0 \Longleftrightarrow A x^{*}=b
$$

Conjugate Gradient

Overview of the CG method for the quadratic problem

1) Initialization. $k=0$ and $x_{k}=x_{0}, d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.

Overview of the CG method for the quadratic problem

1) Initialization. $k=0$ and $x_{k}=x_{0}, d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves calculate α_{k} minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$:

$$
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}}
$$

Overview of the CG method for the quadratic problem

1) Initialization. $k=0$ and $x_{k}=x_{0}, d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves calculate α_{k} minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$:

$$
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}}
$$

3) Algorithm Iteration. Update the position of x_{k} by moving in the direction d_{k}, with a step size α_{k} :

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

Overview of the CG method for the quadratic problem

1) Initialization. $k=0$ and $x_{k}=x_{0}, d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves calculate α_{k} minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$:

$$
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}}
$$

3) Algorithm Iteration. Update the position of x_{k} by moving in the direction d_{k}, with a step size α_{k} :

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

4) Direction Update. Update the $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$, where β_{k} is calculated by the formula:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}} .
$$

Overview of the CG method for the quadratic problem

1) Initialization. $k=0$ and $x_{k}=x_{0}, d_{k}=d_{0}=-\nabla f\left(x_{0}\right)$.
2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves calculate α_{k} minimizing $f\left(x_{k}+\alpha_{k} d_{k}\right)$:

$$
\alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}}
$$

3) Algorithm Iteration. Update the position of x_{k} by moving in the direction d_{k}, with a step size α_{k} :

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

4) Direction Update. Update the $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$, where β_{k} is calculated by the formula:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}} .
$$

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Optimal Step Length

Exact line search:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}+\alpha d_{k}\right)
$$

Optimal Step Length

Exact line search:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}+\alpha d_{k}\right)
$$

Let's find an analytical expression for the step α_{k} :

$$
\begin{gathered}
f\left(x_{k}+\alpha d_{k}\right)=\frac{1}{2}\left(x_{k}+\alpha d_{k}\right)^{\top} A\left(x_{k}+\alpha d_{k}\right)-b^{\top}\left(x_{k}+\alpha d_{k}\right)+c \\
\quad=\frac{1}{2} \alpha^{2} d_{k}^{\top} A d_{k}+d_{k}^{\top}\left(A x_{k}-b\right) \alpha+\left(\frac{1}{2} x_{k}^{\top} A x_{k}+x_{k}^{\top} d_{k}+c\right)
\end{gathered}
$$

Optimal Step Length

Exact line search:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}+\alpha d_{k}\right)
$$

Let's find an analytical expression for the step α_{k} :

$$
\begin{gathered}
f\left(x_{k}+\alpha d_{k}\right)=\frac{1}{2}\left(x_{k}+\alpha d_{k}\right)^{\top} A\left(x_{k}+\alpha d_{k}\right)-b^{\top}\left(x_{k}+\alpha d_{k}\right)+c \\
\quad=\frac{1}{2} \alpha^{2} d_{k}^{\top} A d_{k}+d_{k}^{\top}\left(A x_{k}-b\right) \alpha+\left(\frac{1}{2} x_{k}^{\top} A x_{k}+x_{k}^{\top} d_{k}+c\right)
\end{gathered}
$$

We consider $A \in \mathbb{S}_{++}^{d}$, so the point with zero derivative on this parabola is a minimum:

$$
\left(d_{k}^{\top} A d_{k}\right) \alpha_{k}+d_{k}^{\top}\left(A x_{k}-b\right)=0 \Longleftrightarrow \alpha_{k}=-\frac{d_{k}^{\top}\left(A x_{k}-b\right)}{d_{k}^{\top} A d_{k}}
$$

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

$$
d_{k+1} \perp_{A} d_{k} \Longleftrightarrow d_{k+1}^{\top} A d_{k}=0
$$

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

$$
d_{k+1} \perp_{A} d_{k} \Longleftrightarrow d_{k+1}^{\top} A d_{k}=0
$$

Since $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$, we choose β_{k} so that there is A - orthogonality:

$$
d_{k+1}^{\top} A d_{k}=-\nabla f\left(x_{k+1}\right)^{\top} A d_{k}+\beta_{k} d_{k}^{\top} A d_{k}=0 \Longleftrightarrow \beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}
$$

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

$$
d_{k+1} \perp_{A} d_{k} \Longleftrightarrow d_{k+1}^{\top} A d_{k}=0
$$

Since $d_{k+1}=-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}$, we choose β_{k} so that there is A - orthogonality:

$$
d_{k+1}^{\top} A d_{k}=-\nabla f\left(x_{k+1}\right)^{\top} A d_{k}+\beta_{k} d_{k}^{\top} A d_{k}=0 \Longleftrightarrow \beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}
$$

Lemma 1
All directions of construction using the procedure described above are orthogonal to each other:

$$
\begin{aligned}
& d_{i}^{\top} A d_{j}=0, \text { if } i \neq j \\
& d_{i}^{\top} A d_{j}>0, \text { if } i=j
\end{aligned}
$$

A-orthogonality

v_{1} and v_{2} are orthogonal

$$
v_{1}^{T} v_{2}=0.00
$$

$$
v_{1}^{\top} A v_{2}=1.19
$$

\hat{V}_{1} and \hat{V}_{2} are A-orthogonal

$$
\begin{aligned}
& \hat{V}_{1}^{\top} \hat{V}_{2}=-0.80 \\
& \hat{V}_{1}^{T} A \hat{V}_{2}=-0.00
\end{aligned}
$$

Convergence of the CG method

- Lemma 2

Suppose, we solve n-dimensional quadratic convex optimization problem. The conjugate directions method:

$$
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} d_{i}
$$

where $\alpha_{i}=-\frac{d_{i}^{\top}\left(A x_{i}-b\right)}{d_{i}^{\top} A d_{i}}$ taken from the line search, converges for at most n steps of the algorithm.

CG method in practice

In practice, the following formulas are usually used for the step α_{k} and the coefficient β_{k} :

$$
\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{d_{k}^{\top} A d_{k}} \quad \beta_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k-1}^{\top} r_{k-1}}
$$

where $r_{k}=b-A x_{k}$, since $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ then $r_{k+1}=r_{k}-\alpha_{k} A d_{k}$. Also, $r_{i}^{T} r_{k}=0, \forall i \neq k$ (Lemma 5 from the lecture).

CG method in practice

In practice, the following formulas are usually used for the step α_{k} and the coefficient β_{k} :

$$
\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{d_{k}^{\top} A d_{k}} \quad \beta_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k-1}^{\top} r_{k-1}}
$$

where $r_{k}=b-A x_{k}$, since $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ then $r_{k+1}=r_{k}-\alpha_{k} A d_{k}$. Also, $r_{i}^{T} r_{k}=0, \forall i \neq k$ (Lemma 5 from the lecture).
Let's get an expression for β_{k} :

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}=-\frac{r_{k+1}^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}
$$

CG method in practice

In practice, the following formulas are usually used for the step α_{k} and the coefficient β_{k} :

$$
\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{d_{k}^{\top} A d_{k}} \quad \beta_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k-1}^{\top} r_{k-1}}
$$

where $r_{k}=b-A x_{k}$, since $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ then $r_{k+1}=r_{k}-\alpha_{k} A d_{k}$. Also, $r_{i}^{T} r_{k}=0, \forall i \neq k$ (Lemma 5 from the lecture).
Let's get an expression for β_{k} :

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}=-\frac{r_{k+1}^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}
$$

Numerator: $r_{k+1}^{\top} A d_{k}=\frac{1}{\alpha_{k}} r_{k+1}^{\top}\left(r_{k}-r_{k+1}\right)=\left[r_{k+1}^{\top} r_{k}=0\right]=-\frac{1}{\alpha_{k}} r_{k+1}^{\top} r_{k+1}$
Denominator: $d_{k}^{\top} A d_{k}=\left(r_{k}+\beta_{k-1} d_{k-1}\right)^{\top} A d_{k}=\frac{1}{\alpha_{k}} r_{k}^{\top}\left(r_{k}-r_{k+1}\right)=\frac{1}{\alpha_{k}} r_{k}^{\top} r_{k}$

CG method in practice

In practice, the following formulas are usually used for the step α_{k} and the coefficient β_{k} :

$$
\alpha_{k}=\frac{r_{k}^{\top} r_{k}}{d_{k}^{\top} A d_{k}} \quad \beta_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k-1}^{\top} r_{k-1}}
$$

where $r_{k}=b-A x_{k}$, since $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ then $r_{k+1}=r_{k}-\alpha_{k} A d_{k}$. Also, $r_{i}^{T} r_{k}=0, \forall i \neq k$ (Lemma 5 from the lecture).
Let's get an expression for β_{k} :

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}=-\frac{r_{k+1}^{\top} A d_{k}}{d_{k}^{\top} A d_{k}}
$$

Numerator: $r_{k+1}^{\top} A d_{k}=\frac{1}{\alpha_{k}} r_{k+1}^{\top}\left(r_{k}-r_{k+1}\right)=\left[r_{k+1}^{\top} r_{k}=0\right]=-\frac{1}{\alpha_{k}} r_{k+1}^{\top} r_{k+1}$
Denominator: $d_{k}^{\top} A d_{k}=\left(r_{k}+\beta_{k-1} d_{k-1}\right)^{\top} A d_{k}=\frac{1}{\alpha_{k}} r_{k}^{\top}\left(r_{k}-r_{k+1}\right)=\frac{1}{\alpha_{k}} r_{k}^{\top} r_{k}$

Question

Why is this modification better than the standard version?

CG method in practice. Pseudocode

$$
\begin{aligned}
& \mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0} \\
& \text { if } \mathbf{r}_{0} \text { is sufficiently small, then return } \mathbf{x}_{0} \text { as the result } \\
& \mathbf{d}_{0}:=\mathbf{r}_{0} \\
& k:=0 \\
& \text { repeat } \\
& \qquad \alpha_{k}:=\frac{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{d}_{k}^{\top} \mathbf{A} \mathbf{d}_{k}} \\
& \qquad \mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k} \\
& \mathbf{r}_{k+1}:=\mathbf{r}_{k}-\alpha_{k} \mathbf{A} \mathbf{d}_{k} \\
& \text { if } \mathbf{r}_{k+1} \text { is sufficiently small, then exit loop } \\
& \qquad \beta_{k}:=\frac{\mathbf{r}_{k+1}^{\top} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}} \\
& \quad \mathbf{d}_{k+1}:=\mathbf{r}_{k+1}+\beta_{k} \mathbf{d}_{k} \\
& \quad k:=k+1 \\
& \text { end repeat } \\
& \text { return } \mathbf{x}_{k+1} \text { as the result }
\end{aligned}
$$

Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

$$
x_{k+1}-x_{k}=c d_{k}
$$

where c is some kind of constant. Then for the quadratic case, we have:

$$
\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)=\left(A x_{k+1}-b\right)-\left(A x_{k}-b\right)=A\left(x_{k+1}-x_{k}\right)=c A d_{k}
$$

Expressing from this equation the work $A d_{k}=\frac{1}{c}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)$, we get rid of the "knowledge" of the function in step definition β_{k}, then point 4 will be rewritten as:

$$
\beta_{k}=\frac{\nabla f\left(x_{k+1}\right)^{\top}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)}{d_{k}^{\top}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)} .
$$

This method is called the Polack - Ribier method.

Computational experiments

$$
\text { Run code in } \uparrow \text { Colab. The code taken from } \uparrow \text {. }
$$

