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Strongly convex quadratics
Consider the following quadratic optimization problem: Optimality conditions:

1 *Y *_p *
mirz flz) = mind —z Az —b 'z +c, where A € Si+. Vf(@")=Az" —b=0 <= Az" =b
z€R zeR
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Strongly convex quadratics
Consider the following quadratic optimization problem: Optimality conditions:

min f(z) = min leAac —b"z+¢, where A € S‘L_. V@) =Az" —b=0 <= Az" =b
z€R4 zeRrd 2

Steepest Descent Conjugate Gradient
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Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and zy = zo, drx = do = —V f(x0).
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Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and zy = zo, drx = do = —V f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate oy minimizing f(zx + ardi):

di (Azy —b)

k= d] Ady,
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Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and zy = zo, drx = do = —V f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate oy minimizing f(zx + ardi):

di (Azy —b)

=TT Ady

3) Algorithm lteration. Update the position of z; by moving in the direction dj, with a step size a:

The1l = Tk + ardy
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Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and zy = zo, drx = do = —V f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate oy minimizing f(zx + ardi):

di (Azy —b)

k= d] Ady,

3) Algorithm lteration. Update the position of z; by moving in the direction dj, with a step size a:

The1l = Tk + ardy

4) Direction Update. Update the diy+1 = —V f(2k+1) + Brdi, where By is calculated by the formula:

Vf(py1) " Adi

e = =0 Ady
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Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and zy = zo, drx = do = —V f(x0).
2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves

calculate oy minimizing f(zx + ardi):

di (Azy —b)

k= d] Ady,

3) Algorithm lteration. Update the position of z; by moving in the direction dj, with a step size a:

The1l = Tk + ardy
4) Direction Update. Update the diy+1 = —V f(2k+1) + Brdi, where By is calculated by the formula:

Vf(py1) " Adi

e = =0 Ady

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of z).
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Optimal Step Length

Exact line search:
ap = arg min f (zg41) = arg min f (xx + ady)
acR+ acR+
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Optimal Step Length

Exact line search:
ap = arg min f (zg41) = arg min f (xx + ady)
acR+ acR+

Let's find an analytical expression for the step ay:

1
f(zk + adi) = 5 (zx +ady) " A(zk 4 ady) —b' (zk 4 ady) + ¢

= %azdgAdk +di (Azp — b)a+ (%xZAxk +zdp + c)
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Optimal Step Length

Exact line search:
ap = arg min f (zg41) = arg min f (xx + ady)
acR+ acR+

Let's find an analytical expression for the step ay:

1
f(zk + adi) = 5 (zx +ady) " A(zk 4 ady) —b' (zk 4 ady) + ¢

= %azdgAdk +di (Azp — b)a+ (%xZAxk +zdp + c)

We consider A € ST, so the point with zero derivative on this parabola is a minimum:

_dy (Azy, —b)

T T
(di Adk) ax +dy, (Az —b) =0 < ay = T Ad:
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Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dii1 Lady < dj1Ad, =0
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Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:
dros1 La de = diy1Ad, =0

Since dk+1 = —V f(zk+1) + Brdk, we choose (i so that there is A - orthogonality:

Vf ($k+1)T Adk

dp 1 Ady = =V f (2r11) " Adk + Brdy Ady =0 <= S = B
d] Ady,
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Direction Update
We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dii1 Lady < dj1Ad, =0

Since dk+1 = —V f(zk+1) + Brdk, we choose (i so that there is A - orthogonality:

Vi (ze41) " Ady

dp 1 Ady = =V f (2r11) " Adk + Brdy Ady =0 <= S = B
d] Ady,

@ Lemmal
All directions of construction using the procedure described above are orthogonal to each other:
di Ad; =0, ifi#j

di Ad; >0, ifi=j
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A-orthogonality

vy and v, are orthogonal
viv,=0.00
VIAv,; =1.19

% N

V1 and V2 are A-orthogonal

102 = —0.80
1AV = —0.00
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Convergence of the CG method

@ Lemma 2

where a; =

_d (Az; —b)

Suppose, we solve n-dimensional quadratic convex optimization problem. The conjugate directions method:

k
Tkl = To + E a;d;,
i=0

IT Ad taken from the line search, converges for at most n steps of the algorithm.
i 0
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CG method in practice

In practice, the following formulas are usually used for the step ay, and the coefficient [i:

T];r’f‘k TJT]C
A =

~d] Ady,

Br =

T b
Tp—1Tk—1

where 1, = b — Az, since 11 = xk + axdy then rpy1 = 1 — o Ady. Also, 77 r, = 0,Vi # k (Lemma 5 from
the lecture).
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CG method in practice

In practice, the following formulas are usually used for the step ay, and the coefficient [i:

T];r’f‘k TJT]C
A =

= Tag T

T b
Tp—1Tk—1

where 1, = b — Az, since 11 = xk + axdy then rpy1 = 1 — o Ady. Also, 77 r, = 0,Vi # k (Lemma 5 from
the lecture).

Let's get an expression for [j:
Vf (mk+1)T Adk ’I“;;r+1 Adk

df Ad,  d] Ady

Be =

R f— min 900
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CG method in practice

In practice, the following formulas are usually used for the step ay, and the coefficient [i:

T];r’f‘k TJT]C
A =

~d] Ady,

Br =

T b
Tp—1Tk—1

where 1, = b — Az, since 11 = xk + axdy then rpy1 = 1 — o Ady. Also, 77 r, = 0,Vi # k (Lemma 5 from
the lecture).

Let's get an expression for [j:

,8 _ Vf (mk+1)T Ady _ _T;+1Adk
* ] Ady, d Ady,

T 1T T 1T
Numerator: 1y Adk = 5-7p 1 (Th — Thi1) = [Frq1me = 0] = — s Thr1Th+1

Denominator: dj Adj,

(e + Br—1d—1) " Ady, = iﬁ;r (rk —Th41) = DflkrkTTk
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CG method in practice

In practice, the following formulas are usually used for the step ay, and the coefficient [i:

T];r’f‘k TJT]C
A =

~d] Ady,

Br =

T b
Tp—1Tk—1

where 1, = b — Az, since 11 = xk + axdy then rpy1 = 1 — o Ady. Also, 77 r, = 0,Vi # k (Lemma 5 from
the lecture).

Let's get an expression for [j:

B — Vi (xrs1) Ady _ i1 Adi
* ] Ady, d Ady,

T 1T T 1T
Numerator: 1y Adk = 5-7p 1 (Th — Thi1) = [Frq1me = 0] = — s Thr1Th+1

Denominator: dj Adj,

-
(rk + Br—1dr—1) Adyp = ir,;r (rk — Th+1) = a—lkrkTrk
Question

Why is this modification better than the standard version?
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CG method in practice. Pseudocode

ro:=b— Axo
if ro is sufficiently small, then return xo as the result
do :=ro
k=0
repeat
riry
ay = m

Xpt1 i= Xk + ardy
Y41 =T — ClkAdk

if rp41 is sufficiently small, then exit loop

T
Tpr1Th+1
By 1= hThiL

r,r
dit1 :=rrs1 + Bedr
k=k+1

end repeat

. return xx41 as the result
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Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve

the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:
Tr1 — Tk = cdy,

where ¢ is some kind of constant. Then for the quadratic case, we have:
Vf(l‘k+1) — Vf(l’k) = (Al’k+1 — b) — (Al’k — b) = A($k+1 — a:k) = CAdk

Expressing from this equation the work Ady = 1 (Vf(zr+1) — Vf(zx)), we get rid of the “knowledge” of the
c
function in step definition B, then point 4 will be rewritten as:

Vf(@r1) " (Vf(xri1) = Vi(xr)
df (Vf(xrer) = V()

This method is called the Polack - Ribier method.
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Computational experiments

Run code in ®Colab. The code taken from €.
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