Conditional gradient methods. Projected Gradient Descent. Frank-Wolfe Method. Mirror Descent Algorithm Idea.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Projection

The distance d from point $\mathbf{y} \in \mathbb{R}^{n}$ to closed set $S \subset \mathbb{R}^{n}$:

$$
d(\mathbf{y}, S,\|\cdot\|)=\inf \{\|x-y\| \mid x \in S\}
$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^{n}$ on set $S \subseteq \mathbb{R}^{n}$ is a point $\operatorname{proj}_{S}(\mathbf{y}) \in S$:

$$
\operatorname{proj}_{S}(\mathbf{y})=\frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}}\|x-y\|_{2}^{2}
$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^{n}$ - closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^{n}$ - closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set does not exist.
- If a point is in set, then its projection is the point itself.

Projection

Bourbaki-Cheney-Goldstein inequality theorem
Let $S \subseteq \mathbb{R}^{n}$ be closed and convex, $\forall x \in S, y \in \mathbb{R}^{n}$. Then

$$
\begin{align*}
\left\langle y-\operatorname{proj}_{S}(y), \mathbf{x}-\operatorname{proj}_{S}(y)\right\rangle & \leq 0 \tag{1}\\
\left\|x-\operatorname{proj}_{S}(y)\right\|^{2}+\left\|y-\operatorname{proj}_{S}(y)\right\|^{2} & \leq\|x-y\|^{2} \tag{2}
\end{align*}
$$

? Non-expansive function

A function f is called non-expansive if f is L-Lipschitz with $L \leq 1$
${ }^{1}$. That is, for any two points $x, y \in \operatorname{dom} f$,

$$
\|f(x)-f(y)\| \leq L\|x-y\|, \text { where } L \leq 1
$$

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

Figure 1: Obtuse or straight angle should be for any point $x \in S$

Non-expansive becomes contractive if $L<1$.

Problems

Question

Is projection operator non-expansive?

Question

Find projection $\operatorname{proj}_{S}(\mathbf{y})$ onto S, where S :

- l_{2}-ball with center 0 and radius 1 :

$$
S=\left\{x \in \mathbb{R}^{d} \mid\|x\|_{2}^{2}=\sum_{i=1}^{d} x_{i}^{2} \leq 1\right\}
$$

- \mathbb{R}^{d}-cube:

$$
S=\left\{x \in \mathbb{R}^{d} \mid a_{i} \leq x_{i} \leq b_{i}\right\}
$$

- Affine constraints:

$$
S=\left\{x \in \mathbb{R}^{d} \mid A x=b\right\}
$$

Projected Gradient Descent (PGD). Idea

$$
x_{k+1}=\operatorname{proj}_{S}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \quad \Leftrightarrow \quad y_{k}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

$$
y_{k}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

Figure 2: Illustration of Projected Gradient Descent algorithm

Frank-Wolfe Method (FWM). Idea

Figure 3: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 4: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 5: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 7: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 8: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

Figure 9: Illustration of Frank-Wolfe (conditional gradient) algorithm

Frank-Wolfe Method (FWM). Idea

$$
\begin{aligned}
y_{k} & =\arg \min _{x \in S} f_{x_{k}}^{I}(x)=\arg \min _{x \in S}\left\langle\nabla f\left(x_{k}\right), x\right\rangle \\
x_{k+1} & =\gamma_{k} x_{k}+\left(1-\gamma_{k}\right) y_{k}
\end{aligned}
$$

Figure 10: Illustration of Frank-Wolfe (conditional gradient) algorithm

Convergence rate for smooth and convex case

Theorem
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and differentiable. Let $S \subseteq \mathbb{R}^{n}$ d be a closed convex set, and assume that there is a minimizer x^{*} of f over S; furthermore, suppose that f is smooth over S with parameter L.

- The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration $k>0$:

$$
f\left(x_{k}\right)-f^{*} \leq \frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2 k}
$$

- The Frank-Wolfe Method achieves the following convergence after iteration $k>0$:

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+1}
$$

- FWM specificity
- FWM convergence rate for the μ-strongly convex functions is $\mathcal{O}\left(\frac{1}{k}\right)$
- FWM doesn't work for non-smooth functions. But modifications do.
- FWM works for any norm.

Subgradient method: linear approximation + proximity

Recall SubGD step with sub-gradient g_{k} :

$$
x_{k+1}=\underset{x}{\operatorname{argmin}} \underbrace{f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)}_{\text {linear approximation to } \mathrm{f}}+\underbrace{\frac{1}{2 \alpha}\left\|x-x_{k}\right\|_{2}^{2}}_{\text {proximity term }}
$$

$$
x_{k+1}=x_{k}-\alpha_{k} g_{k} \quad \Leftrightarrow
$$

$$
=\underset{x}{\operatorname{argmin}} \alpha g_{k}^{\top} x+\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}
$$

Figure 11: $\|\cdot\|_{1}$ is not spherical symmetrical

Example. Poor condition

Consider $f\left(x_{1}, x_{2}\right)=x_{1}^{2} \cdot \frac{1}{100}+x_{2}^{2} \cdot 100$.

Figure 12: Poorly conditioned problem in $\|\cdot\|_{2}$ norm

Example. Poor condition

Suppose we are at the point: $x_{k}=\left(\begin{array}{ll}-10 & -0.1\end{array}\right)^{\top}$. SubGD method: $x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)$

$$
\nabla f\left(x_{k}\right)=\left.\left(\begin{array}{ll}
\frac{2 x_{1}}{100} & 2 x_{2} \cdot 100
\end{array}\right)^{\top}\right|_{(-10-0.1)^{\top}}=\left(\begin{array}{ll}
-\frac{1}{5} & -20
\end{array}\right)^{\top}
$$

The problem: due to elongation of the level sets the direction of movement $\left(x_{k+1}-x_{k}\right)$ is $\sim \perp\left(x^{*}-x_{k}\right)$.
The solution: Change proximity term

$$
x_{k+1}=\underset{x}{\operatorname{argmin}} \underbrace{f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)}_{\text {linear approximation to } \mathrm{f}}+\underbrace{\frac{1}{2 \alpha}\left(x-x_{k}\right)^{\top} I\left(x-x_{k}\right)}_{\text {proximity term }}
$$

to another

$$
x_{k+1}=\underset{x}{\operatorname{argmin}} \underbrace{f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)}_{\text {linear approximation to } f}+\underbrace{\frac{1}{2 \alpha}\left(x-x_{k}\right)^{\top} Q\left(x-x_{k}\right)}_{\text {proximimity term }},
$$

where $Q=\left(\begin{array}{cc}\frac{1}{50} & 0 \\ 0 & 200\end{array}\right)$ for this example. And more generally to another function $B_{\phi}(x, y)$ that measures proximity.

Example. Poor condition

Let's find x_{k+1} for this new algorithm

$$
\alpha \nabla f\left(x_{k}\right)+\left(\begin{array}{cc}
\frac{1}{50} & 0 \\
0 & 200
\end{array}\right)\left(x-x_{k}\right)=0 .
$$

Solving for x, we get

$$
x_{k+1}=x_{k}-\alpha\left(\begin{array}{cc}
50 & 0 \\
0 & \frac{1}{200}
\end{array}\right) \nabla f\left(x_{k}\right)=(-10-0.1)^{\top}-\alpha(-10-0.1)^{\top}
$$

Observation: Changing the proximity term, we change the direction $x_{k+1}-x_{k}$. In other words, if we measure distance using this new way, we also change Lipschitzness.

Question
What is the Lipshitz constant of f at the point $\left(\begin{array}{ll}1 & 1\end{array}\right)^{\top}$ for the norm:

$$
\|z\|^{2}=z^{\top}\left(\begin{array}{cc}
50 & 0 \\
0 & \frac{1}{200}
\end{array}\right) z ?
$$

Example. Robust Regression

Square loss $\|A x-b\|_{2}^{2}$ is very sensitive to outliers.
Instead: $\min \|A x-b\|_{1}$. This problem also convex.
Let's compute L-Lipshitz constant for $f(x)=\|A x-b\|_{1}$:

$$
\left|\|A x-b\|_{1}-\|A y-b\|_{1}\right| \leq L\|x-y\|_{2} .
$$

To simplify calculation: $A=I, b=0$, i.e. $f(x)=\|x\|_{1}$.
If we take $x=\mathbf{1}_{d}, y=(1+\varepsilon) \mathbf{1}_{d}$:

$$
\left.|n-(1+\varepsilon) n|=\varepsilon n \leq L\|x-y\|_{2}=\|-\varepsilon\|_{2}=\sqrt{\left(n \varepsilon^{2}\right.}\right)=\varepsilon \sqrt{n} .
$$

Finally, we get $L=\sqrt{n}$. As we can see, L is dimension dependent.
Question
Show that if $\|\nabla f(x)\|_{\infty} \leq 1$, then $\|\nabla f(x)\|_{2} \leq \sqrt{d}$.

References

Examples for the Mirror Descent was taken from the Lecture.

