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Projection

The distance d from point y € R" to closed set S C R":

d(y, S, [I- 1) = nf{flz — y|[ | 2 € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs(y) € S:

. 1 . 9
projs(y) = iargnémllw —yllz
xE

Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.

Sufficient conditions of uniqueness of a projection. If S C R™ - closed convex set, then the projection on set
S is unique for any point.

® |f a set is open, and a point is beyond this set, then its projection on this set does not exist.

If a point is in set, then its projection is the point itself.
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Projection

@ Bourbaki-Cheney-Goldstein inequality theorem

Let S C R"™ be closed and convex, Vx € S,y € R™. Then
(y — projs(y), x — projg(y)) <0 (1)

llz = projs ()1 + lly — projs (WII* < [lz — y|? )

@ Non-expansive function

A function f is called non-expansive if f is L-Lipschitz with L <1
! That is, for any two points z,y € domf,

If(z) — f(»)|l < Lllz —y|, where L < 1.

It means the distance between the mapped points is possibly smaller
than that of the unmapped points.

Non-expansive becomes contractive if L < 1.
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Figure 1: Obtuse or straight angle should be
for any point z € S
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Problems

Question

Is projection operator non-expansive?

Question

Find projection proj¢(y) onto S, where S:
® |5-ball with center 0 and radius 1:

d
S={zeR!|alf= a? <1
i=1
® R cube:

S={zecR ai <z <b}

® Affine constraints:
S = {x e R Az = b}

— mi —
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Projected Gradient Descent (PGD). Idea

Yk = Tk — iV f(2k)

Trt1 = projg (zx — ax V f(zk)) & .
Try1 = projg (yr)

yr = 2 — oV f(zg)

Tr+1 = projs(y)

Figure 2: lllustration of Projected Gradient Descent algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 3: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 4: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 5: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 7: lllustration of Frank-Wolfe (conditional gradient) algorithm

‘f -+ 3101,11,1,’; Lecture recap. Frank-Wolfe Method


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Frank-Wolfe Method (FWM). Idea

Figure 8: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 9: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

_ Y _ .
ye = argmin f;, (z) = argmin(V f(z), )

Zrr1 = YTk + (1 — v)yk

Figure 10: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Convergence rate for smooth and convex case

Theorem

Let f: R™ — R be convex and differentiable. Let S C R"d be a closed convex set, and assume that there is
a minimizer z* of f over S; furthermore, suppose that f is smooth over S with parameter L.
® The Projected Gradient Descent algorithm with stepsize % achieves the following convergence after

iteration k > 0: )
* L”mo $*||2
—_ <L /< - 2
flze) = f o

® The Frank-Wolfe Method achieves the following convergence after iteration k£ > 0:

. _ 2L)|zo — |3
— < - 4
flae) = 17 < k+1

@ FWM specificity

1
® FWM convergence rate for the u-strongly convex functions is O (E)

® FWM doesn't work for non-smooth functions. But modifications do.
® FWM works for any norm.
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Subgradient method: linear approximation + proximity
Recall SubGD step with sub-gradient gx:

. 1
Tpp1 = argmin f(zx) + gi (@ — 2k) + %Hi — k2
x

linear approximation to f
& PP

Tk4+1 = Tk — OkGk proximity term

: T 1 2
= argmin agy = + §Hx — z|2
x

a}z A

I- IIV\ N
N

- ll2

Figure 11: || - ||1 is not spherical symmetrical
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Example. Poor condition

1
Consider f(z1,x2) = 27 - 100 + 3 - 100.

~1

Figure 12: Poorly conditioned problem in || - |[2 norm

‘f -+ ].".}2 Mirror Descent
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Example. Poor condition

Suppose we are at the point: x = (—10 —0.1)". SubGD method: x4 11 = zx — aV f(zx)

Vi) = (25 22, .100)7 —(—1 —QO)T
"7 00 (<1007 \ 5

The problem: due to elongation of the level sets the direction of movement (zx4+1 — xx) is ~L (2% — zx).

The solution: Change proximity term

. 1
Tre1 = argmin f(zx) + gp (z — k) + %(JC — ) [(z — @)
xT

linear approximation to f L
proximity term

to another 1
. T T
Tp+1 = argmin f(zr) + g (x—wk)—l—%(m—xk) (z — zp),
x
linear approximation to f -
proximity term
= 0
where Q = 500 200 for this example. And more generally to another function that measures proximity.
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Example. Poor condition

Let's find xx+1 for this new algorithm

1

aV f(zk) + <%’ 280> (z —zx) = 0.

Solving for x, we get

Tyl = Tk — @ (500 ?) Vf(zr) = (=10 —0.1)" — (=10 —0.1)"
200

Observation: Changing the proximity term, we change the direction ;1 — z. In other words, if we measure
distance using this new way, we also change Lipschitzness.

Question

What is the Lipshitz constant of f at the point (1 1)T for the norm:
== (2
0 350
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Example. Robust Regression

Square loss || Az — b||3 is very sensitive to outliers.
Instead: min ||Az — b||1. This problem also convex.

Let's compute L-Lipshitz constant for f(x) = || Az — b||1:
lAz = blly — [[Ay = bll1| < Lljz — yl|2.

To simplify calculation: A=1,b=0, i.e. f(z) = ||z|1.
If we take z =14, y = (1 4+ ¢)1a:

In—(1+emn| =en < Lllz —ylla = | — £lls = /(ne?) = ev/n.

Finally, we get . As we can see, L is dimension dependent.

Question

Show that if |V f()]|e < 1, then ||V f(z)]2 < Vd.

— min "
‘ f Tz Mirror Descent
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References

Examples for the Mirror Descent was taken from the @ Lecture.
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