Proximal Gradient Method. Proximal operator

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Regularized / Composite Objectives

Many nonsmooth problems take the form

$$
\min _{x \in \mathbb{R}^{n}} \varphi(x)=f(x)+r(x)
$$

- Lasso, L1-LS, compressed sensing

$$
f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, r(x)=\lambda\|x\|_{1}
$$

- L1-Logistic regression, sparse LR

$f(x)=-y \log h(x)-(1-y) \log (1-h(x)), r(x)=\lambda\|x\|_{1}$

Non-smooth convex optimization lower bounds

$$
\begin{array}{rlr}
\text { convex (non-smooth) } & \text { strongly convex (non-smooth) } \\
\hline f\left(x_{k}\right)-f^{*} \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) & f\left(x_{k}\right)-f^{*} \sim \mathcal{O}\left(\frac{1}{k}\right) \\
k_{\varepsilon} & \sim \mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right) & k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \\
\hline
\end{array}
$$

Non-smooth convex optimization lower bounds

convex (non-smooth)	strongly convex (non-smooth)
$f\left(x_{k}\right)-f^{*} \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f\left(x_{k}\right)-f^{*} \sim \mathcal{O}\left(\frac{1}{k}\right)$
k_{ε}	$\sim \mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	

- Subgradient method is optimal for the problems above.
- One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance) with the same convergence rate to better fit the geometry of the problem.
- However, we can achieve standard gradient descent rate $\mathcal{O}\left(\frac{1}{k}\right)$ (and even accelerated version $\mathcal{O}\left(\frac{1}{k^{2}}\right)$) if we will exploit the structure of the problem.

Proximal operator

i Proximal operator

For a convex set $E \in \mathbb{R}^{n}$ and a convex function $f: E \rightarrow \mathbb{R}{\text { operator } \operatorname{prox}_{f}(x) \text { s.t. }}$.

$$
\operatorname{prox}_{f}(x)=\underset{y \in E}{\operatorname{argmin}}\left[f(y)+\frac{1}{2}\|y-x\|_{2}^{2}\right]
$$

is called proximal operator for function f at point x

From projections to proximity

Let \mathbb{I}_{S} be the indicator function for closed, convex S. Recall orthogonal projection $\pi_{S}(y)$

From projections to proximity

Let \mathbb{I}_{S} be the indicator function for closed, convex S. Recall orthogonal projection $\pi_{S}(y)$

$$
\pi_{S}(y):=\arg \min _{x \in S} \frac{1}{2}\|x-y\|_{2}^{2}
$$

From projections to proximity

Let \mathbb{I}_{S} be the indicator function for closed, convex S. Recall orthogonal projection $\pi_{S}(y)$

$$
\pi_{S}(y):=\arg \min _{x \in S} \frac{1}{2}\|x-y\|_{2}^{2}
$$

With the following notation of indicator function

$$
\mathbb{I}_{S}(x)= \begin{cases}0, & x \in S, \\ \infty, & x \notin S,\end{cases}
$$

Rewrite orthogonal projection $\pi_{S}(y)$ as

$$
\pi_{S}(y):=\arg \min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|^{2}+\mathbb{I}_{S}(x) .
$$

From projections to proximity

Let \mathbb{I}_{S} be the indicator function for closed, convex S. Recall orthogonal projection $\pi_{S}(y)$

$$
\pi_{S}(y):=\arg \min _{x \in S} \frac{1}{2}\|x-y\|_{2}^{2}
$$

With the following notation of indicator function

$$
\mathbb{I}_{S}(x)= \begin{cases}0, & x \in S, \\ \infty, & x \notin S,\end{cases}
$$

Rewrite orthogonal projection $\pi_{S}(y)$ as

$$
\pi_{S}(y):=\arg \min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|^{2}+\mathbb{I}_{S}(x) .
$$

Proximity: Replace \mathbb{I}_{S} by some convex function!

$$
\operatorname{prox}_{r}(y)=\operatorname{prox}_{r, 1}(y):=\arg \min \frac{1}{2}\|x-y\|^{2}+r(x)
$$

Proximal Gradient Method

- Proximal Gradient Method Theorem

Consider the proximal gradient method

$$
x_{k+1}=\operatorname{prox}_{\alpha r}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

for the criterion $\phi(x)=f(x)+r(x)$ s.t.: 1. f is convex, differentiable with Lipschitz gradients; 1. r is convex and prox-friendly. Then Proximal Gradient Method with fixed step size $\alpha=\frac{1}{L}$ converges with rate $O\left(\frac{1}{k}\right)$

ISTA and FISTA

Methods for solving problems involving $L 1$ regularization (e.g. Lasso).

ISTA (Iterative Shrinkage-Thresholding Algorithm)

- Step:

$$
x_{k+1}=\operatorname{prox}_{\alpha \lambda\|\cdot\|_{1}}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

- Convergence: $O\left(\frac{1}{k}\right)$

Composite optimization

FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

- Step:

$$
\begin{gathered}
x_{k+1}=\operatorname{prox}_{\alpha \lambda\|\cdot\|_{1}}\left(y_{k}-\alpha \nabla f\left(y_{k}\right)\right) \\
t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \\
y_{k+1}=x_{x+1}+\frac{t_{k}-1}{t_{k+1}}\left(x_{k+1}-x_{k}\right)
\end{gathered}
$$

- Convergence: $O\left(\frac{1}{k^{2}}\right)$

Problem 1. ReLU in prox

Question

Find the $\operatorname{prox}_{f}(x)$ for $f(x)=\lambda \max (0, x)$:

$$
\operatorname{prox}_{\lambda \max (0, \cdot)}(x)=\underset{y \in \mathbb{R}}{\operatorname{argmin}}\left[\frac{1}{2}\|y-x\|^{2}+\lambda \max (0, y)\right]
$$

Problem 2. Grouped l_{1}-regularizer

Question

Find the $\operatorname{prox}_{f}(x)$ for $f(x)=\|x\|_{1 / 2}=\sum_{g=0}^{G}\left\|x_{g}\right\|_{2}$ where $x \in \mathbb{R}^{n}=[\underbrace{x_{1}, x_{2}}_{1}, \ldots, \underbrace{\ldots,}_{g}, \ldots, \underbrace{x_{n-2}, x_{n-1}, x_{n}}_{G}]$:

$$
\operatorname{prox}_{\|x\|_{1 / 2}}(x)=\underset{y \in \mathbb{R}}{\operatorname{argmin}}\left[\frac{1}{2}\|y-x\|_{2}^{2}+\sum_{g=0}^{G}\left\|y_{g}\right\|_{2}\right]
$$

Linear Least Squares with L_{1}-regularizer

Proximal Methods Comparison for Linear Least Squares with L_{1}-regularizer \mathfrak{F} Open in Colab.

