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Flat Minimum vs Sharp Minimum

ñ Question

What’s wrong with Sharp Minimum?
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Sharpness-Aware Minimization1

Figure 1: A sharp minimum to which a ResNet trained with
SGD converged.

Figure 2: A wide minimum to which the same ResNet trained
with SAM converged.

Sharpness-Aware Minimization (SAM) is a procedure that aims to improve model generalization by simultane-
ously minimizing loss value and loss sharpness.

1Foret, Pierre, et al. “Sharpness-aware minimization for efficiently improving generalization.” (2020).
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Learning setup

The training dataset drawn i.i.d. from a distribution D:

S = {(xi, yi)}n
i=1,

where xi – feature vector and yi – label.

The training set loss:

LS = 1
n

n∑
i=1

l(w, xi, yi),

where l – per-data-point loss function, w – parameters.

The population loss:
LD = E(x,y)[l(w, x, y)]

SAM v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Learning setup

The training dataset drawn i.i.d. from a distribution D:

S = {(xi, yi)}n
i=1,

where xi – feature vector and yi – label.

The training set loss:

LS = 1
n

n∑
i=1

l(w, xi, yi),

where l – per-data-point loss function, w – parameters.

The population loss:
LD = E(x,y)[l(w, x, y)]

SAM v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Learning setup

The training dataset drawn i.i.d. from a distribution D:

S = {(xi, yi)}n
i=1,

where xi – feature vector and yi – label.

The training set loss:

LS = 1
n

n∑
i=1

l(w, xi, yi),

where l – per-data-point loss function, w – parameters.

The population loss:
LD = E(x,y)[l(w, x, y)]

SAM v § } 4

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


What is sharpness?

ñ Theorem

For any ρ > 0, with high probability over training set S generated from distribution D,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ) + h
(
∥w∥2

2/ρ2)
,

where h : R+ → R+is a strictly increasing function (under some technical conditions on LD(w) ).

Adding and subtracting LS(w):[
max

∥∈∥2≤ρ
LS(w + ϵ) − LS(w)

]
+ LS(w) + h

(
∥w∥2

2/ρ2)
The term in square brackets captures the sharpness of LS at w by measuring how quickly the training loss can be
increased by moving from w to a nearby parameter value.
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Sharpness-Aware Minimization

The function h is removed in favor of a simpler constant λ. The authors propose selecting parameter values by
solving the following Sharpness-Aware Minimization (SAM) problem:

min
w

LSAM
S (w) + λ∥w∥2

2 where LSAM
S (w) ≜ max

∥ϵ∥p≤ρ
LS(w + ϵ),

with ρ ≥ 0 as hyperparameter and p in [1, ∞] (a little generalization, though p = 2 is empirically the best choice).
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How to minimize LSAM
S ?

In order to minimize LSAM
S an efficient approximation of its gradient is used. A first step is to consider the

first-order Taylor expansion of LS(w + ϵ):

ϵ∗(w) ≜ arg max
∥ϵ∥p≤ρ

LS(w + ϵ) ≈ arg max
∥ϵ∥p≤ρ

LS(w) + ϵT ∇wLS(w) = arg max
∥ϵ∥p≤ρ

ϵT ∇wLS(w).

The last expression is just the argmax of the dot product of the vectors ϵ and ∇wLS(w), and it is well known which
is the argument that maximizes it:

ϵ̂(w) = ρ sign (∇wLS(w)) |∇wLS(w)|q−1 /
(
∥∇wLS(w)∥q

q

)1/p
,

where 1/p + 1/q = 1.

Thus
∇wLSAM

S (w) ≈ ∇wLS(w + ϵ̂(w)) = d(w + ϵ̂(w))
dw

∇wLS(w)
∣∣∣∣
w+ϵ̂(w)

= ∇wLS(w)|w+ϵ̂(w) + dϵ̂(w)
dw

∇wLS(w)
∣∣∣∣
w+ϵ̂(w)
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Sharpness-Aware Minimization
Modern frameworks can easily compute the preceding approximation. However, to speed up the computation,
second-order terms can be dropped obtaining:

∇wLSAM
S (w) ≈ ∇wLS(w)

∣∣
w+ϵ̂(w)

Figure 3: SAM pseudo-code
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SAM results

Figure 4: Error rate reduction obtained by switching to SAM. Each point is a different dataset / model / data augmentation.
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Mode Connectivity2

Figure 5: The l2-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a function of network weights
in a two-dimensional subspace. In each panel, the horizontal axis is fixed and is attached to the optima of two independently
trained networks. The vertical axis changes between panels as we change planes (defined in the main text). Left: Three
optima for independently trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in each panel a direct linear
path between each mode would incur high loss.

2Garipov, Timur, et al. “Loss surfaces, mode connectivity, and fast ensembling of dnns.” Advances in neural information processing systems
31 (2018).
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Curve-Finding Procedure

• Weights of pretrained networks:

ŵ1, ŵ2 ∈ R|net|

• Define parametric curve: ϕθ(·) : [0, 1] → R|net|

ϕθ(0) = ŵ1, ϕθ(1) = ŵ2

• DNN loss function:

L(w)
• Minimize averaged loss w.r.t. θ:

minimize
θ

ℓ(θ) =
∫ 1

0
L (ϕθ(t)) dt = Et∼U(0,1)L (ϕθ(t))
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Grokking3

• After achieving zero train loss the weights
continue evolving in a kind of random
walk manner

• It is possible that they slowly drift to a
wider minima

• Recently discovered grokking effect
confirms this hypo

Figure 6: Grokking: A dramatic example of generalization far after
overfitting on an algorithmic dataset.

3Power, Alethea, et al. “Grokking: Generalization beyond overfitting on small algorithmic datasets.” (2022).
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Double Descent4

Figure 7: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve arising from the
bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical”
regime) together with the observed behavior from using high capacity function classes (i.e., the “modern” interpolating regime),
separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

4Belkin, Mikhail, et al. “Reconciling modern machine-learning practice and the classical bias–variance trade-off.” (2019)
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