Matrix Derivatives. Automatic Differentiation

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Theory recap. Differential

- Differential $d f(x)[\cdot]: U \rightarrow V$ in point $x \in U$ for $f(\cdot): U \rightarrow V$:

$$
f(x+h)-f(x)=\underbrace{d f(x)[h]}_{\text {differential }}+\bar{o}(\|h\|)
$$

- Canonical form of the differential:

$U \rightarrow V$	\mathbb{R}	\mathbb{R}^{n}	$\mathbb{R}^{n \times m}$
\mathbb{R}	$f^{\prime}(x) d x$	$\nabla f(x) d x$	$\nabla f(x) d x$
\mathbb{R}^{n}	$\nabla f(x)^{T} d x$	$J(x) d x$	-
$\mathbb{R}^{n \times m}$	$\operatorname{tr}\left(\nabla f(X)^{T} d X\right)$	-	-

Theory recap. Differentiation Rules

- Useful differentiation rules and standard derivatives:

Differentiation Rules

$$
\begin{gathered}
d A=0 \\
d(\alpha X)=\alpha(d X) \\
d(A X B)=A(d X) B \\
d(X+Y)=d X+d Y \\
d\left(X^{T}\right)=(d X)^{T} \\
d(X Y)=(d X) Y+X(d Y) \\
d(\langle X, Y\rangle)=\langle d X, Y\rangle+\langle X, d Y\rangle \\
d\left(\frac{X}{\phi}\right)=\frac{\phi d X-(d \phi) X}{\phi^{2}}
\end{gathered}
$$

Standard Derivatives

$$
\begin{gathered}
d(\langle A, X\rangle)=\langle A, d X\rangle \\
d(\langle A x, x\rangle)=\left\langle\left(A+A^{T}\right) x, d x\right\rangle \\
d(\operatorname{Det}(X))=\operatorname{Det}(X)\left\langle X^{-T}, d X\right\rangle \\
d\left(X^{-1}\right)=-X^{-1}(d X) X^{-1}
\end{gathered}
$$

Matrix Calculus. Problem 1

Example
Find $\nabla f(x)$, if $f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$.

Matrix Calculus. Problem 2

Example

Find $\nabla f(X)$, if $f(X)=\operatorname{tr}\left(A X^{-1} B\right)$

- $h(x)=f(g(x)) \Rightarrow d h\left(x_{0}\right)[d x]=d f\left(g\left(x_{0}\right)\right)\left[d g\left(x_{0}\right)[d x]\right]$

Matrix Calculus. Problem 3

Example

Find the gradient $\nabla f(x)$ and hessian $\nabla^{2} f(x)$, if $f(x)=\frac{1}{3}\|x\|_{2}^{3}$

- $d^{2} f(x)\left[h_{1}, h_{2}\right]=d(d f(x)[\underbrace{h_{1}}_{\text {fixed when take outer } d(\cdot)}])\left[h_{2}\right]$
- Canonic form for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}: d^{2} f(x)\left[h_{1}, h_{2}\right]=h_{1}^{T} \underbrace{\nabla^{2} f(x)}_{\text {hessian }} h_{2}$

Automatic Differentiation. Forward mode

Figure 1: Illustration of forward chain rule to calculate the derivative of the function v_{i} with respect to w_{k}.

- Uses the forward chain rule
- Has complexity $d \times \mathcal{O}(T)$ operations

Automatic Differentiation. Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_{i}.

- Uses the backward chain rule
- Stores the information from the forward pass
- Has complexity $\mathcal{O}(T)$ operations

Automatic Differentiation. Problem 1

Example

Which of the AD modes would you choose (forward/reverse) for the following computational graph of primitive arithmetic operations?

Figure 3: Which mode would you choose for calculating gradients there?

Automatic Differentiation. Problem 2

Figure 4: x could be found as a solution of linear system
Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system $A x=b$, namely one can write down an analytical solution $x=A^{-1} b$.
Find the derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}$.

Automatic Differentiation. Problem 3

Figure 5: Computation graph for singular regularizer
Suppose, we have the rectangular matrix $W \in \mathbb{R}^{m \times n}$, which has a singular value decomposition:

$$
W=U \Sigma V^{T}, \quad U^{T} U=I, \quad V^{T} V=I, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\min (m, n)}\right)
$$

The regularizer $R(W)=\operatorname{tr}(\Sigma)$ in any loss function encourages low rank solutions. Find the derivative $\frac{\partial R}{\partial W}$.

Computation experiment with JAX

- JAX docs: https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

