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Forward mode

Figure 1: Illustration of forward chain rule to calculate the derivative of the function vi with respect to wk.

• Uses the forward chain rule
• Has complexity d × O(T ) operations
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Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node vi.

• Uses the backward chain rule
• Stores the information from the forward pass
• Has complexity O(T ) operations

Automatic Differentiation v § } 3

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Toy example
Example

f(x1, x2) = x1 ∗ x2 + sin x1

Let’s calculate the derivatives ∂f

∂xi
using forward and reverse modes.

Figure 3: Illustration of computation graph of f(x1, x2).
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Automatic Differentiation with JAX

Example №1

f(X) = tr(AX−1B)

∇f = −X−T AT BT X−T

Example №2

g(x) = 1/3 · ||x||32

∇2g = ||x||−1
2 xxT + ||x||2In

Let’s calculate the gradients and hessians of f and g in python 3
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Problem 1
Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive
arithmetic operations?

Figure 4: Which mode would you choose for calculating gradients there?
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Problem 2

Suppose, we have an invertible matrix A and a vector b,
the vector x is the solution of the linear system Ax = b,
namely one can write down an analytical solution
x = A−1b.

Question

Find the derivatives ∂L

∂A
,

∂L

∂b
.

Figure 5: x could be found as a solution of linear system
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Problem 3
Suppose, we have the rectangular matrix W ∈ Rm×n,
which has a singular value decomposition:

W = UΣV T , UT U = I, V T V = I,

Σ = diag(σ1, . . . , σmin(m,n))

The regularizer R(W ) = tr(Σ) in any loss function
encourages low rank solutions.

Question

Find the derivative ∂R

∂W
.

Figure 6: Computation graph for singular regularizer
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Computation experiment with JAX

Let’s make sure numerically that we have correctly calculated the derivatives in problems 2-3 3
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Feedforward Architecture

Forward pass

Backward pass

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.
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Vanilla backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.
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Memory poor backpropagation

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.
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Checkpointed backpropagation
checkpoint

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.
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Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §
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