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Figure 1: lllustration of forward chain rule to calculate the derivative of the function v; with respect to wy,.

® Uses the forward chain rule
® Has complexity d x O(T") operations
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Reverse mode
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Figure 2: lllustration of reverse chain rule to calculate the derivative of the function L with respect to the node v;.
® Uses the backward chain rule

® Stores the information from the forward pass
® Has complexity O(T') operations
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Toy example

Example

f(x1,22) = 21 * 22 + sinx
: . of .
Let's calculate the derivatives e using forward and reverse modes.

T
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Toy example

Example

f(x1,22) = 21 * 22 + sinx

R 0 .
Let's calculate the derivatives Bif using forward and reverse modes.

T4
Figure 3: lllustration of computation graph of f(x1,z2).
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Automatic Differentiation with JAX

Example Nel
f(X)=tr(AX 'B)

Vfi=-XTA"B"x" "
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Automatic Differentiation with JAX

Example Nel
f(X)=tr(AX 'B)

Vfi=-XTA"B"x" "

Example Ne2

g(x) =1/3-|jzll3

Vg = llally 22" + ||z|21n
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Automatic Differentiation with JAX

Example Nel Example Ne2
f(X) = tr(AX7'B) g(z) = 1/3-||a|f3

Vi=-XTATB X T Vg = |lzll5 'zz” + [|2||21n

Let's calculate the gradients and hessians of f and g in python @
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Problem 1

Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive
arithmetic operations?
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Figure 4: Which mode would you choose for calculating gradients there?
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Problem 2

Suppose, we have an invertible matrix A and a vector b, oL
the vector x is the solution of the linear system Ax = b, B
namely one can write down an analytical solution

T = Aflb. AeRM"
Question
oL
oL % =

Find the derivatives 8—27 5%

Figure 5: x could be found as a solution of linear system
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Problem 3

Suppose, we have the rectangular matrix W € R™*",

which has a singular value decomposition:

w=uxsv?, Uv'u=1 V'v=I,
Y= diag(al, ceuy Umin(m,n))

The regularizer R(W') = tr(X) in any loss function
encourages low rank solutions.

Question

Find the derivative a—R

ow
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Figure 6: Computation graph for singular regularizer
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Computation experiment with JAX

Let's make sure numerically that we have correctly calculated the derivatives in problems 2-3 @
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Feedforward Architecture

Forward pass
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Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

‘f‘”,".ﬂ Gradient checkpointing 0 O 10


https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz

Feedforward Architecture

Forward pass
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Backward pass

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

! Important

The results obtained for the f nodes are needed to compute the b nodes.
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Vanilla backpropagation
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Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Vanilla backpropagation
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Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.
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Vanilla backpropagation
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Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.
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Vanilla backpropagation
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Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

® High memory usage. The memory usage grows linearly with the number of layers in the neural network.
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Memory poor backpropagation
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Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Memory poor backpropagation
s OSO=
A4 A4

OaO0aOn 'a =

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.
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Memory poor backpropagation

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.
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Memory poor backpropagation

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

e Computationally inefficient. The number of node evaluations scales with n?, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.
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Checkpointed backpropagation

checkpoint

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.
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Checkpointed backpropagation

checkpoint

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.
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Checkpointed backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.
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Checkpointed backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

® Memory consumption depends on the number of checkpoints. More effective then vanilla approach.
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Gradient checkpointing visualization

The animated visualization of the above approaches €)

An example of using a gradient checkpointing €
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