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Convex Function
The function f(x), which is defined on the convex set S ⊆ Rn, is called convex on S, if:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1.
If the above inequality holds as strict inequality x1 ̸= x2 and 0 < λ < 1, then the function is called strictly convex
on S.

Figure 1: Difference between convex and non-convex function
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Strong Convexity

f(x), defined on the convex set S ⊆ Rn, is called µ-strongly convex (strongly convex) on S, if:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) − µ

2 λ(1 − λ)∥x1 − x2∥2

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1 for some µ > 0.

Function
Global quadratic lower bound

Figure 2: Strongly convex function is greater or equal than global quadratic lower bound at any point
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First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set S ⊆ Rn is convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x)

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x

Figure 3: Convex function is greater or equal than Taylor linear approximation at any point
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S ⊆ Rn is µ-strongly convex if and only if
∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ µI

In other words:

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2
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Motivational Experiment with JAX

Why convexity and strong convexity is important? Check the simple 3code snippet.
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Problem 1

Question

Show, that f(x) = ∥x∥ is convex on Rn.

Question

Show, that f(x) = x⊤Ax, where A ⪰ 0 - is convex on Rn.
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Problem 2

Question

Show, that if f(x) is convex on Rn, then exp(f(x)) is convex on Rn.
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Problem 3

Question

If f(x) is convex nonnegative function and p ≥ 1. Show that g(x) = f(x)p is convex.
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Problem 4

Question

Show that, if f(x) is concave positive function over convex S, then g(x) = 1
f(x) is convex.

Question

Show, that the following function is convex on the set of all positive denominators

f(x) = 1

x1 − 1

x2 − 1

x3 − 1
. . .

, x ∈ Rn
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Problem 5

Question

Let S = {x ∈ Rn | x ≻ 0, ∥x∥∞ ≤ M}. Show that f(x) =
∑n

i=1 xi log xi is 1
M

-strongly convex.
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Polyak-Lojasiewicz (PL) Condition

PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ µ(f(x) − f∗)∀x

The example of a function, that satisfies the PL-condition, but is not convex.

f(x, y) = (y − sin x)2

2

Example of Pl non-convex function 3Open in Colab.
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Optimality Conditions. Important notions recap

f(x) → min
x∈S

A set S is usually called a budget set.
• A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x.
• A point x∗ is a local minimizer if there exists a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N .
• A point x∗ is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of

x∗ such that f(x∗) < f(x) for all x ∈ N with x ̸= x∗.
• We call x∗ a stationary point (or critical) if ∇f(x∗) = 0. Any local minimizer must be a stationary point.

Figure 4: Illustration of different stationary (critical) points
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Unconstrained optimization recap

� First-Order Necessary Conditions

If x∗ is a local minimizer and f is continuously differentiable in an open neighborhood, then

∇f(x∗) = 0 (1)

� Second-Order Sufficient Conditions

Suppose that ∇2f is continuous in an open neighborhood of x∗ and that

∇f(x∗) = 0 ∇2f(x∗) ≻ 0. (2)

Then x∗ is a strict local minimizer of f .
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Lagrange multipliers recap

Consider simple yet practical case of equality constraints:

f(x) → min
x∈Rn

s.t. hi(x) = 0, i = 1, . . . , p

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through
increasing the dimensionality of the problem:

L(x, ν) = f(x) +
p∑

i=1

νihi(x) → min
x∈Rn,ν∈Rp
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Problem 1

Question

Function f : E → R is defined as
f(x) = ln (−Q(x))

where E = {x ∈ Rn : Q(x) < 0} and

Q(x) = 1
2x⊤Ax + b⊤x + c

with A ∈ Sn
++, b ∈ Rn, c ∈ R.

Find the maximizer x∗ of the function f .
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Problem 2

Question

Give an explicit solution of the following task.

⟨c, x⟩ +
n∑

i=1

xi log xi → min
x∈Rn

s.t.
n∑

i=1

xi = 1,

where x ∈ Rn
++, c ̸= 0.
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Adversarial Attacks as Constrained Optimization

Figure 5: Any neural network can be fooled with invisible pertubation

• Targetted Adversarial Attack:

ρ(x, x + r) → min
r∈Rn

s.t. y(x + r) = target_class,

• Non-targetted Adversarial Attack:

ρ(x, x + r) → min
r∈Rn

s.t. y(x + r) = y(x),
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Solution from Szegedy et al, “Intriguing properties of neural networks”
• Targetted Adversarial Attack Task:

ρ(x, x + r) → min
r∈Rn

s.t. y(x + r) = target_class,

• Targetted Lagrange function L(r, c | x):

||r||2 − c log p(y = target_class | x + r) → min
r∈Rn

• Non-targetted Adversarial Attack Task:

ρ(x, x + r) → min
r∈Rn

s.t. y(x + r) = y(x),

• Non-targetted Lagrange function L(r, c | x):

||r||2 + c log p(y = yorigin | x + r) → min
r∈Rn

, Method Problems

1. Attack success or not – there is no guarantee the method will work;
2. Simple optimizers may not work due to nonconvexity of Neural Networks (authors use L-BFGS);

ñ More sophisticated methods

• Fast Gradient Sign Method (FGSM)
• Deep Fool
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