Optimality conditions. Optimization with equality / inequality conditions. KKT.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Optimality Conditions. Important notions recap

$$
f(x) \rightarrow \min _{x \in S}
$$

A set S is usually called a budget set.

- A point x^{*} is a global minimizer if $f\left(x^{*}\right) \leq f(x)$ for all x.
- A point x^{*} is a local minimizer if there exists a neighborhood N of x^{*} such that $f\left(x^{*}\right) \leq f(x)$ for all $x \in N$.
- A point x^{*} is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of x^{*} such that $f\left(x^{*}\right)<f(x)$ for all $x \in N$ with $x \neq x^{*}$.
- We call x^{*} a stationary point (or critical) if $\nabla f\left(x^{*}\right)=0$. Any local minimizer must be a stationary point.

Figure 1: Illustration of different stationary (critical) points

Unconstrained optimization recap

- First-Order Necessary Conditions

If x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{1}
\end{equation*}
$$

Second-Order Sufficient Conditions

Suppose that $\nabla^{2} f$ is continuous in an open neighborhood of x^{*} and that

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \quad \nabla^{2} f\left(x^{*}\right) \succ 0 \tag{2}
\end{equation*}
$$

Then x^{*} is a strict local minimizer of f.

Optimization with equality conditions

Consider simple yet practical case of equality constraints:

$$
\begin{aligned}
& f(x) \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } & h_{i}(x)=0, i=1, \ldots, p
\end{aligned}
$$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$
L(x, \nu)=f(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)=f(x)+\nu^{T} h(x) \rightarrow \min _{x \in \mathbb{R}^{n}, \nu \in \mathbb{R}^{p}}
$$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$
L(x, \nu)=f(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)=f(x)+\nu^{T} h(x) \rightarrow \min _{x \in \mathbb{R}^{n}, \nu \in \mathbb{R}^{p}}
$$

Necessery conditions:

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \nu^{*}\right)=0 \\
& \nabla_{\nu} L\left(x^{*}, \nu^{*}\right)=0
\end{aligned}
$$

Sufficient conditions:

$$
\begin{gathered}
\left\langle y, \nabla_{x x}^{2} L\left(x^{*}, \nu^{*}\right) y\right\rangle>0 \\
\forall y \neq 0 \in \mathbb{R}^{n}: \nabla h_{i}\left(x^{*}\right)^{T} y=0
\end{gathered}
$$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

$$
\begin{aligned}
& \qquad f(x) \rightarrow \min _{x \in \mathbb{R}^{n}} \\
& \text { s.t. } g(x) \leq 0
\end{aligned}
$$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

$$
\begin{aligned}
& f(x) \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } & g(x) \leq 0
\end{aligned}
$$

$g(x) \leq 0$ is inactive. $g\left(x^{*}\right)<0$:

$$
\begin{gathered}
g\left(x^{*}\right)<0 \\
\nabla f\left(x^{*}\right)=0 \\
\nabla^{2} f\left(x^{*}\right)>0
\end{gathered}
$$

$$
g(x) \leq 0 \text { is active. } g\left(x^{*}\right)=0
$$

$$
\begin{gathered}
g\left(x^{*}\right)=0 \\
-\nabla f\left(x^{*}\right)=\lambda \nabla g\left(x^{*}\right), \lambda>0 \\
\left\langle y, \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) y\right\rangle>0 \\
\forall y \neq 0 \in \mathbb{R}^{n}: \nabla g\left(x^{*}\right)^{\top} y=0
\end{gathered}
$$

General formulation

General problem of mathematical programming:

$$
\begin{aligned}
f_{0}(x) & \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } & f_{i}(x) \\
& \leq 0, i=1, \ldots, m \\
h_{i}(x) & =0, i=1, \ldots, p
\end{aligned}
$$

General formulation

General problem of mathematical programming:

$$
\left.\begin{array}{rl}
f_{0}(x) & \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& h_{i}(x)
\end{array}\right)=0, i=1, \ldots, p
$$

The solution involves constructing a Lagrange function:

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

KKT Necessary conditions

Let $x^{*},\left(\lambda^{*}, \nu^{*}\right)$ be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^{*} is equal to the optimal value for the dual problem d^{*}). Let also the functions f_{0}, f_{i}, h_{i} be differentiable.

KKT Necessary conditions

Let $x^{*},\left(\lambda^{*}, \nu^{*}\right)$ be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^{*} is equal to the optimal value for the dual problem d^{*}). Let also the functions f_{0}, f_{i}, h_{i} be differentiable.

$$
\begin{aligned}
& (1) \nabla_{x} L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=0 \\
& \text { (2) } \nabla_{\nu} L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=0 \\
& \text { (3) } \lambda_{i}^{*} \geq 0, i=1, \ldots, m \\
& \text { (4) } \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, i=1, \ldots, m \\
& \text { (5) } f_{i}\left(x^{*}\right) \leq 0, i=1, \ldots, m
\end{aligned}
$$

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

If for a convex problem (i.e., assuming minimization, f_{0}, f_{i} are convex and h_{i} are affine), there exists a point x such that $h(x)=0$ and $f_{i}(x)<0$ (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.

KKT Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as follows. The solution $x^{*}, \lambda^{*}, \nu^{*}$, which satisfies the KKT conditions (above) is a constrained local minimum if for the Lagrangian,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

the following conditions hold:

$$
\begin{aligned}
& \left\langle y, \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}, \nu^{*}\right) y\right\rangle>0 \\
& \forall y \neq 0 \in \mathbb{R}^{n}: \nabla h_{i}\left(x^{*}\right)^{\top} y=0, \nabla f_{0}\left(x^{*}\right)^{\top} y \leq 0, \nabla f_{j}\left(x^{*}\right)^{\top} y=0 \\
& i=1, \ldots, p \quad \forall j: f_{j}\left(x^{*}\right)=0
\end{aligned}
$$

Problem 1

Question

Function $f: E \rightarrow \mathbb{R}$ is defined as

$$
f(x)=\ln (-Q(x))
$$

where $E=\left\{x \in \mathbb{R}^{n}: Q(x)<0\right\}$ and

$$
Q(x)=\frac{1}{2} x^{\top} A x+b^{\top} x+c
$$

with $A \in \mathbb{S}_{++}^{n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$.
Find the maximizer x^{*} of the function f.

Problem 2

Question

Give an explicit solution of the following task.

$$
\begin{array}{ll}
& f(x, y)=x+y \rightarrow \min \\
\text { s.t. } & x^{2}+y^{2}=1
\end{array}
$$

where $x, y \in \mathbb{R}$.

Problem 3

Question

Give an explicit solution of the following task.

$$
\begin{array}{ll}
& \langle c, x\rangle+\sum_{i=1}^{n} x_{i} \log x_{i} \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1
\end{array}
$$

where $x \in \mathbb{R}_{++}^{n}, c \neq 0$.

Problem 4

Question

Give an explicit solution of the following task.

$$
\begin{array}{ll}
& f(x, y)=(x-2)^{2}+2(y-1)^{2} \rightarrow \min \\
\text { s.t. } & x+4 y \leq 3 \\
& x \geq y
\end{array}
$$

where $x, y \in \mathbb{R}$.

Problem 5

Question

Given $y \in\{-1,1\}$, and $X \in \mathbb{R}^{n \times p}$, the Support Vector Machine problem is:

$$
\begin{array}{ll}
& \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \rightarrow \min _{w, w_{0}, \xi_{i}} \\
\text { s.t. } & \xi_{i} \geq 0, i=1, \ldots, n \\
& y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1-\xi_{i}, i=1, \ldots, n
\end{array}
$$

find the KKT stationarity condition.

