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Dual function
The general mathematical programming problem with functional constraints:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

And the Lagrangian, associated with this problem:

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x) = f0(x) + λ⊤f(x) + ν⊤h(x)

We assume D =
m⋂

i=0
dom fi ∩

p⋂
i=1

dom hi is nonempty. We define the Lagrange dual function (or just dual

function) g : Rm × Rp → R as the minimum value of the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)
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Dual function. Summary

� Primal

Function:
f0(x)

Variables:
x ∈ S ⊆ R⋉

Constraints:

fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

� Dual

Function:

g(λ, ν) = min
x∈D

L(x, λ, ν)

Variables
λ ∈ Rm

+ , ν ∈ Rp

Constraints:
λi ≥ 0, ∀i ∈ 1, m
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Strong Duality
It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we
have:

d∗ ≤ p∗

While the difference between them is often called duality gap:

0 ≤ p∗ − d∗

Strong duality happens if duality gap is zero:

p∗ = d∗

Slater’s condition

If for a convex optimization problem (i.e., assuming minimization, f0, fi are convex and hi are affine), there
exists a point x such that h(x) = 0 and fi(x) < 0 (existance of a strictly feasible point), then we have a
zero duality gap and KKT conditions become necessary and sufficient.
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Reminder of KKT statements
Suppose we have a general optimization problem

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

(1)

and convex optimization problem, where all equality constraints are affine:

hi(x) = aT
i x − bi, i ∈ 1, . . . p.

The KKT system is:

∇xL(x∗, λ∗, ν∗) = 0
∇νL(x∗, λ∗, ν∗) = 0
λ∗

i ≥ 0, i = 1, . . . , m

λ∗
i fi(x∗) = 0, i = 1, . . . , m

fi(x∗) ≤ 0, i = 1, . . . , m

(2)
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KKT becomes necessary

If x∗ is a solution of the original problem Equation 1, then if any of the following regularity conditions is
satisfied:

• Strong duality If f1, . . . fm, h1, . . . hp are differentiable functions and we have a problem Equation 1 with
zero duality gap, then Equation 2 are necessary (i.e. any optimal set x∗, λ∗, ν∗ should satisfy Equation 2)

• LCQ (Linearity constraint qualification). If f1, . . . fm, h1, . . . hp are affine functions, then no other
condition is needed.

• LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints
and the gradients of the equality constraints are linearly independent at x∗

• SC (Slater’s condition) For a convex optimization problem (i.e., assuming minimization, fi are convex
and hj is affine), there exists a point x such that hj(x) = 0 and gi(x) < 0.

Than it should satisfy Equation 2

KKT in convex case

If a convex optimization problem with differentiable objective and constraint functions satisfies Slater’s
condition, then the KKT conditions provide necessary and sufficient conditions for optimality: Slater’s
condition implies that the optimal duality gap is zero and the dual optimum is attained, so x∗ is optimal if
and only if there are (λ∗, ν∗) that, together with x∗, satisfy the KKT conditions.
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Problem 1. Dual LP

Ensure, that the following standard form Linear Programming (LP):

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, . . . , n

Has the following dual:

max
y∈Rn

b⊤y

s.t. AT y ⪯ c

Find the dual problem to the problem above (it should be the original LP).
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Problem 2. Projection onto probability simplex

Find the Euclidean projection of x ∈ Rn onto probability simplex

P = {z ∈ Rn | z ⪰ 0, 1⊤z = 1},

i.e. solve the following problem:
1
2∥y − x∥2

2 → min
y∈Rn⪰0

s.t. 1⊤y = 1
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Problem 3. Shadow prices or tax interpretation

Consider an enterprise where x represents its operational strategy and f0(x) is the operating cost. Therefore,
−f0(x) denotes the profit in dollars. Each constraint fi(x) ≤ 0 signifies a resource or regulatory limit. The goal is
to maximize profit while adhering to these limits, which is equivalent to solving:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

The optimal profit here is −p∗.
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Problem 4. Norm regularized problems

Ensure, that the following normed regularized problem:

min f(x) + ∥Ax∥

has the following dual:

f∗(−A⊤y) → min
y

s.t. ∥y∥∗ ≤ 1
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