Gradient Descent. Convergence rates

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Gradient Descent

Suppose, we have a problem of minimization of a smooth function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x) \rightarrow \min _{x \in \mathbb{R}}
$$

Gradient Descent

Suppose, we have a problem of minimization of a smooth function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x) \rightarrow \min _{x \in \mathbb{R}}
$$

One of the methods to solve this is gradient descent:

$$
x_{k+1}=x_{k}-\eta_{k} \nabla f\left(x_{k}\right)
$$

Gradient Descent

Suppose, we have a problem of minimization of a smooth function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x) \rightarrow \min _{x \in \mathbb{R}}
$$

One of the methods to solve this is gradient descent:

$$
x_{k+1}=x_{k}-\eta_{k} \nabla f\left(x_{k}\right)
$$

The bottleneck (for almost all gradient methods) is choosing step-size, which can lead to the dramatic difference in method's behavior.

How to choose step sizes

- One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

$$
\eta_{k}=\frac{1}{L}
$$

How to choose step sizes

- One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

$$
\eta_{k}=\frac{1}{L}
$$

- Backtracking line search. Fix two parameters: $0<\beta<1$ and $0<\alpha \leq 0.5$. At each iteration, start with $\mathrm{t}=1$, and while

$$
f\left(x_{k}-t \nabla f\left(x_{k}\right)\right)>f\left(x_{k}\right)-\alpha t\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

shrink $t=\beta t$. Else perform Gradient Descent update $x_{k+1}=x_{k}-t \nabla f\left(x_{k}\right)$.

How to choose step sizes

- One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

$$
\eta_{k}=\frac{1}{L}
$$

- Backtracking line search. Fix two parameters: $0<\beta<1$ and $0<\alpha \leq 0.5$. At each iteration, start with $\mathrm{t}=1$, and while

$$
f\left(x_{k}-t \nabla f\left(x_{k}\right)\right)>f\left(x_{k}\right)-\alpha t\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

shrink $t=\beta t$. Else perform Gradient Descent update $x_{k+1}=x_{k}-t \nabla f\left(x_{k}\right)$.

- Exact line search.

$$
\eta_{k}=\underset{\eta \geq 0}{\arg \min } f\left(x_{k}-\eta \nabla f\left(x_{k}\right)\right)
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Thus, the direction of the antigradient

$$
h=-\frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|_{2}}
$$

gives the direction of the steepest local decreasing of the function f.

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{gathered}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{gathered}
$$ and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Thus, the direction of the antigradient

$$
h=-\frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|_{2}}
$$

gives the direction of the steepest local decreasing of the function f. The result of this method is

$$
x_{k+1}=x_{k}-\alpha f^{\prime}\left(x_{k}\right)
$$

Minimizer of Lipschitz parabola

 If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

Minimizer of Lipschitz parabola

 If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Figure 1: Illustration

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2} \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Figure 1: Illustration

$$
\begin{aligned}
& \nabla \phi_{2}(x)=0 \\
& \nabla f\left(x_{0}\right)+L\left(x^{*}-x_{0}\right)=0 \\
& x^{*}=x_{0}-\frac{1}{L} \nabla f\left(x_{0}\right) \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)
\end{aligned}
$$

This way leads to the $\frac{1}{L}$ stepsize choosing. However, often the L constant is not known.

Strongly convexity and Polyak - Lojasiewicz condition.

PL-condition:

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x \in \mathbb{R}^{n}, \mu>0
$$

where $f^{*}=f\left(x^{*}\right), x^{*}=\arg \min f(x)$

Strongly convexity and Polyak - Lojasiewicz condition.

PL-condition:

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x \in \mathbb{R}^{n}, \mu>0
$$

where $f^{*}=f\left(x^{*}\right), x^{*}=\arg \min f(x)$
if $f(x)$ is differentiable and μ strongly convex then:

$$
f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right)+\frac{\mu}{2}\left\|x^{*}-x\right\|^{2}
$$

Strongly convexity and Polyak - Lojasiewicz condition.

PL-condition:

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x \in \mathbb{R}^{n}, \mu>0
$$

where $f^{*}=f\left(x^{*}\right), x^{*}=\arg \min f(x)$
if $f(x)$ is differentiable and μ strongly convex then:

$$
\begin{gathered}
f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right)+\frac{\mu}{2}\left\|x^{*}-x\right\|^{2} \\
f(x)-f\left(x^{*}\right) \leq \nabla f(x)^{T}\left(x-x^{*}\right)-\frac{\mu}{2}\left\|x^{*}-x\right\|^{2} \leq\|\nabla f(x)\|\left\|x-x^{*}\right\|-\frac{\mu}{2}\left\|x^{*}-x\right\|^{2}
\end{gathered}
$$

Strongly convexity and Polyak - Lojasiewicz condition.

PL-condition:

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x \in \mathbb{R}^{n}, \mu>0
$$

where $f^{*}=f\left(x^{*}\right), x^{*}=\arg \min f(x)$
if $f(x)$ is differentiable and μ strongly convex then:

$$
\begin{gathered}
f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right)+\frac{\mu}{2}\left\|x^{*}-x\right\|^{2} \\
f(x)-f\left(x^{*}\right) \leq \nabla f(x)^{T}\left(x-x^{*}\right)-\frac{\mu}{2}\left\|x^{*}-x\right\|^{2} \leq\|\nabla f(x)\|\left\|x-x^{*}\right\|-\frac{\mu}{2}\left\|x^{*}-x\right\|^{2} \\
\leq[\text { parabola's top }] \leq \frac{\|\nabla f(x)\|^{2}}{2 \mu}
\end{gathered}
$$

Thus, for a μ-strongly convex function, the PL-condition is satisfied

Exact line search aka steepest descent

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. Interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

Optimality conditions:

$$
\nabla f\left(x_{k+1}\right)^{\top} \nabla f\left(x_{k}\right)=0
$$

Figure 2: Steepest Descent

Open In Colab

Convergence analysis. Backtracking line search

Assume that f is convex, differentiable and Lipschitz gradient with constant $L>0$.
Theorem
Gradient descent with fixed step size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

Convergence analysis. Backtracking line search

Assume that f is convex, differentiable and Lipschitz gradient with constant $L>0$.
Theorem
Gradient descent with fixed step size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

Let's show that the convergence rate for the Backtracking line search is no worse than $O(1 / k)$

Convergence analysis. Backtracking line search

Assume that f is convex, differentiable and Lipschitz gradient with constant $L>0$.
Theorem
Gradient descent with fixed step size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

Let's show that the convergence rate for the Backtracking line search is no worse than $O(1 / k)$ Since ∇f is Lipschitz continuous with constant $L>0$, we have

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}, \forall x, y
$$

Convergence analysis. Backtracking line search

Assume that f is convex, differentiable and Lipschitz gradient with constant $L>0$.
Theorem
Gradient descent with fixed step size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

Let's show that the convergence rate for the Backtracking line search is no worse than $O(1 / k)$ Since ∇f is Lipschitz continuous with constant $L>0$, we have

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}, \forall x, y
$$

Let $y=x^{+}=x-t \nabla f(x)$, then:

$$
f\left(x^{+}\right) \leq f(x)-\left(1-\frac{L t}{2}\right) t\|\nabla f(x)\|_{2}^{2} \leq f(x)-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
$$

Convergence analysis. Backtracking line search

Assume that f is convex, differentiable and Lipschitz gradient with constant $L>0$.
Theorem
Gradient descent with fixed step size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}
$$

Let's show that the convergence rate for the Backtracking line search is no worse than $O(1 / k)$
Since ∇f is Lipschitz continuous with constant $L>0$, we have

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}, \forall x, y
$$

Let $y=x^{+}=x-t \nabla f(x)$, then:

$$
f\left(x^{+}\right) \leq f(x)-\left(1-\frac{L t}{2}\right) t\|\nabla f(x)\|_{2}^{2} \leq f(x)-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
$$

This recalls us the stopping condition in Backtracking line search when $\alpha=0.5, t=\frac{1}{L}$. Hence, Backtracking line search with $\alpha=0.5$ plus condition of Lipschitz gradient will guarantee us the convergence rate of $O(1 / k)$.

Python Examples

Why convexity and strong convexity is important? Check the simple ?code snippet.
Cool illustration of gradient descent
Lipschitz constant for linear regression

