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Gradient Descent

Suppose, we have a problem of minimization of a smooth function f(x) : Rn → R:

f(x) → min
x∈R

One of the methods to solve this is gradient descent:

xk+1 = xk − ηk∇f(xk)

The bottleneck (for almost all gradient methods) is choosing step-size, which can lead to the dramatic difference in
method’s behavior.
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How to choose step sizes

• One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

ηk = 1
L

• Backtracking line search. Fix two parameters: 0 < β < 1 and 0 < α ≤ 0.5. At each iteration, start with
t = 1, and while

f(xk − t∇f(xk)) > f(xk) − αt∥∇f(xk)∥2
2,

shrink t = βt. Else perform Gradient Descent update xk+1 = xk − t∇f(xk).
• Exact line search.

ηk = arg min
η≥0

f(xk − η∇f(xk))
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)
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Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 1: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.

Gradient Descent roots v § } 5

https://fmin.xyz
https://hse24.fmin.xyz
https://github.com/MerkulovDaniil/hse24
https://t.me/fminxyz


Strongly convexity and Polyak - Lojasiewicz condition.

PL-condition:

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x ∈ Rn, µ > 0,

where f∗ = f(x∗), x∗ = arg min f(x)

if f(x) is differentiable and µ strongly convex then:

f(x∗) ≥ f(x) + ∇f(x)T (x∗ − x) + µ

2 ∥x∗ − x∥2

f(x) − f(x∗) ≤ ∇f(x)T (x − x∗) − µ

2 ∥x∗ − x∥2 ≤ ∥∇f(x)∥∥x − x∗∥ − µ

2 ∥x∗ − x∥2

≤ [parabola’s top] ≤ ∥∇f(x)∥2

2µ

Thus, for a µ-strongly convex function, the PL-condition is satisfied
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Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
Interesting theoretical property of this method is that each following iteration is orthogonal
to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t ≤ 1/L satisfies

f
(
x(k)) − f∗ ≤

∥∥x(0) − x∗
∥∥2

2
2tk

Let’s show that the convergence rate for the Backtracking line search is no worse than O(1/k)

Since ∇f is Lipschitz continuous with constant L > 0, we have

f(y) ≤ f(x) + ∇f(x)T (y − x) + L

2 ∥y − x∥2
2, ∀x, y

Let y = x+ = x − t∇f(x), then:

f
(
x+)

≤ f(x) −
(

1 − Lt

2

)
t∥∇f(x)∥2

2 ≤ f(x) − 1
2L

∥∇f(x)∥2
2

This recalls us the stopping condition in Backtracking line search when α = 0.5, t = 1
L

. Hence, Backtracking line
search with α = 0.5 plus condition of Lipschitz gradient will guarantee us the convergence rate of O(1/k).
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Python Examples

Why convexity and strong convexity is important? Check the simple 3code snippet.

Cool illustration of gradient descent 3

Lipschitz constant for linear regression 3
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